Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 991072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386177

RESUMEN

Airway cholinergic nerves play a key role in airway physiology and disease. In asthma and other diseases of the respiratory tract, airway cholinergic neurons undergo plasticity and contribute to airway hyperresponsiveness and mucus secretion. We currently lack human in vitro models for airway cholinergic neurons. Here, we aimed to develop a human in vitro model for peripheral cholinergic neurons using human pluripotent stem cell (hPSC) technology. hPSCs were differentiated towards vagal neural crest precursors and subsequently directed towards functional airway cholinergic neurons using the neurotrophin brain-derived neurotrophic factor (BDNF). Cholinergic neurons were characterized by ChAT and VAChT expression, and responded to chemical stimulation with changes in Ca2+ mobilization. To culture these cells, allowing axonal separation from the neuronal cell bodies, a two-compartment PDMS microfluidic chip was subsequently fabricated. The two compartments were connected via microchannels to enable axonal outgrowth. On-chip cell culture did not compromise phenotypical characteristics of the cells compared to standard culture plates. When the hPSC-derived peripheral cholinergic neurons were cultured in the chip, axonal outgrowth was visible, while the somal bodies of the neurons were confined to their compartment. Neurons formed contacts with airway smooth muscle cells cultured in the axonal compartment. The microfluidic chip developed in this study represents a human in vitro platform to model neuro-effector interactions in the airways that may be used for mechanistic studies into neuroplasticity in asthma and other lung diseases.

2.
Cell Death Dis ; 7: e2214, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27148687

RESUMEN

Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death.


Asunto(s)
Hidroxiquinolinas/farmacología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Procolágeno-Prolina Dioxigenasa/genética , Inhibidores de Prolil-Hidroxilasa/farmacología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adenosina Trifosfato/agonistas , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Sistemas CRISPR-Cas , Línea Celular , Regulación de la Expresión Génica , Ácido Glutámico/toxicidad , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones , Neuronas/citología , Neuronas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo , Procolágeno-Prolina Dioxigenasa/deficiencia , Procolágeno-Prolina Dioxigenasa/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Cell Death Differ ; 23(5): 814-27, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26586570

RESUMEN

Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death.


Asunto(s)
Calcio/metabolismo , Muerte Celular , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Homeostasis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Línea Celular , Supervivencia Celular , Humanos
4.
Apoptosis ; 19(11): 1545-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25146045

RESUMEN

It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.


Asunto(s)
Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Clorometilcetona Tosilisina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Glutámico/farmacología , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/metabolismo , Estrés Oxidativo , Transducción de Señal , Clorometilcetona de Tosilfenilalanila/farmacología
5.
Cell Death Dis ; 5: e993, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24434516

RESUMEN

Delayed neuronal cell death largely contributes to the progressive infarct development and associated functional impairments after cerebral ischemia or brain trauma. Previous studies exposed a key role for the interaction of the mitochondrial protein apoptosis-inducing factor (AIF) and cytosolic cyclophilin A (CypA) in pathways of programmed cell death in neurons in vitro and in vivo. These studies suggested that pro-apoptotic activities of AIF, such as its translocation to the nucleus and subsequent DNA degradation, depend on the physical interaction of AIF with CypA. Hence, this protein complex may represent a new pharmacological target for inhibiting the lethal action of AIF on the brain tissue. In this study, we show that the AIF amino-acid residues 370-394 mediate the protein complex formation of AIF with CypA. The synthetic AIF(370-394) peptide inhibited AIF/CypA complex formation in vitro by binding CypA with a K(D) of 12 µM. Further, the peptide exerted pronounced neuroprotective effects in a model of glutamate-induced oxidative stress in cultured HT-22 cells. In this model system of AIF-dependent cell death, the AIF(370-394) peptide preserved mitochondrial integrity, as detected by measurements of the mitochondrial membrane potential and quantification of mitochondrial fragmentation. Further, the AIF(370-394) peptide inhibited perinuclear accumulation of fragmented mitochondria, mitochondrial release of AIF to the nucleus and glutamate-induced cell death to a similar extent as CypA-siRNA. These data indicate that the targeting of the AIF-CypA axis is an effective strategy of neuroprotection.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis , Ciclofilina A/metabolismo , Neuronas/citología , Neuronas/metabolismo , Estrés Oxidativo , Secuencias de Aminoácidos , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Ciclofilina A/genética , Regulación hacia Abajo , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Neuronas/enzimología , Unión Proteica
6.
Cell Death Dis ; 5: e999, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24434522

RESUMEN

Small-conductance Ca(2+)-activated K(+) channel activation is an emerging therapeutic approach for treatment of neurological diseases, including stroke, amyotrophic lateral sclerosis and schizophrenia. Our previous studies showed that activation of SK channels exerted neuroprotective effects through inhibition of NMDAR-mediated excitotoxicity. In this study, we tested the therapeutic potential of SK channel activation of NS309 (25 µM) in cultured human postmitotic dopaminergic neurons in vitro conditionally immortalized and differentiated from human fetal mesencephalic cells. Quantitative RT-PCR and western blotting analysis showed that differentiated dopaminergic neurons expressed low levels of SK2 channels and high levels of SK1 and SK3 channels. Further, protein analysis of subcellular fractions revealed expression of SK2 channel subtype in mitochondrial-enriched fraction. Mitochondrial complex I inhibitor rotenone (0.5 µM) disrupted the dendritic network of human dopaminergic neurons and induced neuronal death. SK channel activation reduced mitochondrial membrane potential, while it preserved the dendritic network, cell viability and ATP levels after rotenone challenge. Mitochondrial dysfunction and delayed dopaminergic cell death were prevented by increasing and/or stabilizing SK channel activity. Overall, our findings show that activation of SK channels provides protective effects in human dopaminergic neurons, likely via activation of both membrane and mitochondrial SK channels. Thus, SK channels are promising therapeutic targets for neurodegenerative disorders such as Parkinson's disease, where dopaminergic cell loss is associated with progression of the disease.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Calcio/metabolismo , Diferenciación Celular , Neuronas Dopaminérgicas/citología , Humanos , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Transporte de Proteínas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
7.
J Neurosci Methods ; 203(1): 69-77, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21963366

RESUMEN

Detection of neuronal cell death is a standard requirement in cell culture models of neurodegenerative diseases. Although plenty of viability assays are available for in vitro applications, most of these are endpoint measurements providing only little information on the kinetics of cell death. Here, we validated the xCELLigence system based on impedance measurement for real-time detection of cell death in a neuronal cell line of immortalized hippocampal neurons (HT-22 cells), neuronal progenitor cells (NPC) and differentiated primary cortical neurons. We found a good correlation between impedance measurements and endpoint viability assays in HT-22 cells and NPC, for detecting proliferation, cell death kinetics and also neuroprotective effects of pharmacological inhibitors of apoptosis. In primary neurons we could not detect dendritic outgrowth during differentiation of the cells. Cell death in primary neurons was detectable by the xCELLigence system, however, the changes in the cell index on the basis of impedance measurements depended to a great extent on the severity of the insult. Cell death induced by ionomycin, e.g. shows as a fast paced process involving a strong cellular disintegration, which allows for impedance-based detection. Cell death accompanied by less pronounced morphological changes like glutamate induced cell death, however, is not well accessible by this approach. In conclusion, our data show that impedance measurement is a convenient and reliable method for the detection of proliferation and kinetics of cell death in neuronal cell lines, whereas this method is less suitable for the assessment of neuronal differentiation and viability of primary neurons.


Asunto(s)
Muerte Celular/fisiología , Impedancia Eléctrica , Neuronas/patología , Muerte Celular/efectos de los fármacos , Línea Celular , Ácido Glutámico/toxicidad , Humanos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
8.
Cell Death Dis ; 2: e147, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21509037

RESUMEN

Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders.


Asunto(s)
Isquemia Encefálica/metabolismo , Señalización del Calcio , Ácido Glutámico/metabolismo , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Técnicas de Cultivo de Célula , Muerte Celular , Células Cultivadas , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Indoles/farmacología , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Oximas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Transcripción Genética
9.
Neuropsychopharmacology ; 33(9): 2237-50, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17987062

RESUMEN

The immunological response in the brain is crucial to overcome neuropathological events. Some inflammatory mediators, such as the immunoregulatory cytokine interleukin-6 (IL-6) affect neuromodulation and may also play protective roles against various noxious conditions. However, the fundamental mechanisms underlying the long-term effects of IL-6 in the brain remain unclear. We now report that IL-6 increases the expression and function of the neuronal adenosine A1 receptor, with relevant consequences to synaptic transmission and neuroprotection. IL-6-induced amplification of A1 receptor function enhances the responses to readily released adenosine during hypoxia, enables neuronal rescue from glutamate-induced death, and protects animals from chemically induced convulsing seizures. Taken together, these results suggest that IL-6 minimizes the consequences of excitotoxic episodes on brain function through the enhancement of endogenous adenosinergic signaling.


Asunto(s)
Interleucina-6/farmacología , Neuronas/efectos de los fármacos , Receptor de Adenosina A1/metabolismo , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Análisis de Varianza , Animales , Autorradiografía/métodos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de la radiación , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Interleucina-6/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pentilenotetrazol/farmacología , Ensayo de Unión Radioligante/métodos , Receptor de Adenosina A1/genética , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...