Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 25(21): 2763-2773, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26441349

RESUMEN

Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.


Asunto(s)
Células Amacrinas/metabolismo , Uniones Comunicantes/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Axones/metabolismo , Dendritas/metabolismo , Interneuronas/metabolismo , Fototransducción , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Opsinas de Bastones/metabolismo , Vías Visuales
2.
J Neurophysiol ; 114(5): 2955-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26400257

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.


Asunto(s)
Fototransducción , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados/fisiología , Células Ganglionares de la Retina/fisiología , Potenciales de Acción , Animales , Estimulación Luminosa , Ratas
4.
Exp Eye Res ; 130: 17-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450063

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.


Asunto(s)
Células Ganglionares de la Retina/citología , Animales , Animales Recién Nacidos , Axones/fisiología , Ritmo Circadiano/fisiología , Electrofisiología , Luz , Potenciales de la Membrana/fisiología , Ratones , Estimulación Luminosa , Ratas , Ratas Sprague-Dawley , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/metabolismo , Visión Ocular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...