Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012386

RESUMEN

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

2.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998039

RESUMEN

BACKGROUNDDuring aging, there is a functional decline in the pool of muscle stem cells (MuSCs) that influences the functional and regenerative capacity of skeletal muscle. Preclinical evidence has suggested that nicotinamide riboside (NR) and pterostilbene (PT) can improve muscle regeneration, e.g., by increasing MuSC function. The objective of this study was to investigate if supplementation with NR and PT (NRPT) promotes skeletal muscle regeneration after muscle injury in elderly individuals by improved recruitment of MuSCs.METHODSThirty-two elderly individuals (55-80 years of age) were randomized to daily supplementation with either NRPT (1,000 mg NR and 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, skeletal muscle injury was induced by electrically induced eccentric muscle work. Skeletal muscle biopsies were obtained before, 2 hours after, and 2, 8, and 30 days after injury.RESULTSA substantial skeletal muscle injury was induced by the protocol and associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content, proliferation, and cell size revealed a large demand for recruitment after injury, but this was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, central nuclei, and embryonic myosin heavy chain showed no NRPT supplementation effect.CONCLUSIONDaily supplementation with 1,000 mg NR and 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly individuals.TRIAL REGISTRATIONClinicalTrials.gov NCT03754842.FUNDINGNovo Nordisk Foundation (NNF17OC0027242) and Novo Nordisk Foundation CBMR.


Asunto(s)
Enfermedades Musculares , Cadenas Pesadas de Miosina , Anciano , Forma MM de la Creatina-Quinasa , Suplementos Dietéticos , Humanos , Músculo Esquelético , Mioglobina/farmacología , Niacinamida/análogos & derivados , Compuestos de Piridinio , Estilbenos
3.
J Int Soc Sports Nutr ; 17(1): 7, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992300

RESUMEN

BACKGROUND: Deliberately training with reduced carbohydrate availability, a paradigm coined training low, has shown to promote adaptations associated with improved aerobic capacity. In this context researchers have proposed that protein may be ingested prior to training as a means to enhance the protein balance during exercise without spoiling the effect of the low carbohydrate availability. Accordingly, this is being practiced by world class athletes. However, the effect of protein intake on muscle protein metabolism during training low has not been studied. This study aimed to examine if protein intake prior to exercise with reduced carbohydrate stores benefits muscle protein metabolism in exercising and non-exercising muscles. METHODS: Nine well-trained subjects completed two trials in random order both of which included a high-intensity interval ergometer bike ride (day 1), a morning (day 2) steady state ride (90 min at 65% VO2peak, 90ss), and a 4-h recovery period. An experimental beverage was consumed before 90ss and contained either 0.5 g whey protein hydrolysate [WPH]/ kg lean body mass or flavored water [PLA]. A stable isotope infusion (L-[ring-13C6]-phenylalanine) combined with arterial-venous blood sampling, and plasma flow rate measurements were used to determine forearm protein turnover. Myofibrillar protein synthesis was determined from stable isotope incorporation into the vastus lateralis. RESULTS: Forearm protein net balance was not different from zero during 90ss exercise (nmol/100 ml/min, PLA: 0.5 ± 2.6; WPH: 1.8, ± 3.3) but negative during the 4 h recovery (nmol/100 ml/min, PLA: - 9.7 ± 4.6; WPH: - 8.7 ± 6.5); no interaction (P = 0.5) or main effect of beverage (P = 0.11) was observed. Vastus lateralis myofibrillar protein synthesis rates were increased during 90ss exercise (+ 0.02 ± 0.02%/h) and recovery (+ 0.02 ± 0.02%/h); no interaction (P = 0.3) or main effect of beverage (P = 0.3) was observed. CONCLUSION: We conclude that protein ingestion prior to endurance exercise in the energy- and carbohydrate-restricted state does not increase myofibrillar protein synthesis or improve net protein balance in the exercising and non-exercising muscles, respectively, during and in the hours after exercise compared to ingestion of a non-caloric control. TRIAL REGISTRATION: clinicaltrials.gov, NCT01320449. Registered 10 May 2017 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03147001.


Asunto(s)
Dieta Baja en Carbohidratos , Proteínas en la Dieta/administración & dosificación , Proteínas Musculares/metabolismo , Resistencia Física , Adolescente , Adulto , Ciclismo , Estudios Cruzados , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
J Physiol ; 598(4): 731-754, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31710095

RESUMEN

KEY POINTS: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.


Asunto(s)
Resistencia a la Insulina , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Niacinamida/análogos & derivados , Obesidad/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , NAD/metabolismo , Niacinamida/administración & dosificación , Nicotinamida Fosforribosiltransferasa/metabolismo , Compuestos de Piridinio
5.
J Clin Endocrinol Metab ; 104(11): 5703-5714, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31390002

RESUMEN

OBJECTIVE: Augmenting nicotinamide adenine dinucleotide (NAD+) metabolism through dietary provision of NAD+ precursor vitamins translates to improved glucose handling in rodent models of obesity and diabetes. Preclinical evidence suggests that the NAD+/SIRT1 axis may be implicated in modulating important gut-related aspects of glucose regulation. We sought to test whether NAD+ precursor supplementation with nicotinamide riboside (NR) affects ß-cell function, α-cell function, and incretin hormone secretion as well as circulating bile acid levels in humans. DESIGN: A 12-week randomized, double-blind, placebo-controlled, parallel-group trial in 40 males with obesity and insulin resistance allocated to NR at 1000 mg twice daily (n = 20) or placebo (n = 20). Two-hour 75-g oral glucose tolerance tests were performed before and after the intervention, and plasma concentrations of glucose, insulin, C-peptide, glucagon, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were determined. ß-Cell function indices were calculated based on glucose, insulin, and C-peptide measurements. Fasting plasma concentrations of bile acids were determined. RESULTS: NR supplementation during 12 weeks did not affect fasting or postglucose challenge concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, or GIP, and ß-cell function did not respond to the intervention. Additionally, no changes in circulating adipsin or bile acids were observed following NR supplementation. CONCLUSION: The current study does not provide evidence to support that dietary supplementation with the NAD+ precursor NR serves to impact glucose tolerance, ß-cell secretory capacity, α-cell function, and incretin hormone secretion in nondiabetic males with obesity. Moreover, bile acid levels in plasma did not change in response to NR supplementation.


Asunto(s)
Glucemia , Polipéptido Inhibidor Gástrico/sangre , Péptido 1 Similar al Glucagón/sangre , Glucagón/sangre , Islotes Pancreáticos/efectos de los fármacos , Niacinamida/análogos & derivados , Obesidad/sangre , Péptido C/sangre , Método Doble Ciego , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/sangre , Islotes Pancreáticos/fisiopatología , Masculino , Persona de Mediana Edad , Niacinamida/farmacología , Obesidad/fisiopatología , Compuestos de Piridinio
6.
7.
Am J Clin Nutr ; 108(2): 343-353, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29992272

RESUMEN

Background: Animal studies suggest a positive role for nicotinamide riboside (NR) on insulin sensitivity and hepatic steatosis in models of obesity and type 2 diabetes. NR, an NAD+ precursor, is a member of the vitamin B-3 family now available as an over-the-counter supplement. Although data from preclinical trials appear consistent, potential effects and safety need to be evaluated in human clinical trials. Objective: The aim of this study was to test the safety of dietary NR supplementation over a 12-wk period and potential to improve insulin sensitivity and other metabolic parameters in obese, insulin-resistant men. Design: In an investigator-initiated randomized, placebo-controlled, double-blinded, and parallel-group designed clinical trial, forty healthy, sedentary men with a body mass index (BMI) > 30 kg/m2, age-range 40-70 y were randomly assigned to 12 wk of NR (1000 mg twice daily) or placebo. We determined the effects of NR supplementation on insulin sensitivity by a hyperinsulinemic euglycemic clamp and substrate metabolism by indirect calorimetry and labeled substrates of tritiated glucose and palmitate. Body composition and fat mass distribution were determined by whole-body dual-energy X-ray absorptiometry (DXA) and MRI scans, and measurements of intrahepatic lipid content were obtained by MR spectroscopy. Results: Insulin sensitivity, endogenous glucose production, and glucose disposal and oxidation were not improved by NR supplementation. Similarly, NR supplementation had no effect on resting energy expenditure, lipolysis, oxidation of lipids, or body composition. No serious adverse events due to NR supplementation were observed and safety blood tests were normal. Conclusion: 12 wk of NR supplementation in doses of 2000 mg/d appears safe, but does not improve insulin sensitivity and whole-body glucose metabolism in obese, insulin-resistant men. This trial was registered at clinicaltrials.gov as NCT02303483.


Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Niacinamida/análogos & derivados , Obesidad/metabolismo , Adulto , Anciano , Composición Corporal , Suplementos Dietéticos , Método Doble Ciego , Glucosa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Niacinamida/administración & dosificación , Niacinamida/efectos adversos , Compuestos de Piridinio
8.
Sex Dev ; 11(5-6): 262-268, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29197878

RESUMEN

Gonadoblastoma and malignant transformations thereof can occur in females with Turner syndrome (TS) and Y chromosomal material. However, in females with TS and no Y chromosomal material, this is rarely seen. We report a female with an apparent 45,X karyotype (in blood and tumor) who was diagnosed with a metastatic embryonal carcinoma. Exome sequencing of blood and the tumor was done, and no Y chromosomal material was detected, while predicted deleterious mutations in KIT (likely driver), AKT1, and ZNF358 were identified in the tumor. The patient was treated with chemotherapy (first-line: cisplatin, etoposide, and bleomycin; second-line: paclitaxel and gemcitabine), and after that surgical debulking was performed. She is currently well and without signs of relapse. We conclude that embryonal carcinoma can apparently occur in 45,X TS without signs of Y chromosomal material.


Asunto(s)
Carcinoma Embrionario/genética , Cromosomas Humanos Y/genética , Exoma/genética , Síndrome de Turner/genética , Adulto , Gonadotropina Coriónica/genética , Femenino , Humanos , Cariotipificación , L-Lactato Deshidrogenasa/genética , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-kit/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...