Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 99(1): 210-218, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28816148

RESUMEN

PURPOSE: To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode. METHODS AND MATERIALS: A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan. RESULTS: In 6 treatment fractions recorded over 3 weeks, the mean (± standard deviation) range shifts aggregated over all spots in 9 energy layers were -0.8 ± 1.3 mm for the lateral field, 1.7 ± 0.7 mm for the right-superior-oblique field, and -0.4 ± 0.9 mm for the vertex field. CONCLUSIONS: This study demonstrates the feasibility and illustrates the distinctive benefits of prompt gamma imaging in pencil beam scanning treatment mode. Accuracy in range verification was found in this first clinical case to be better than the range uncertainty margin applied in the treatment plan. These first results lay the foundation for additional work toward tighter integration of the system for in vivo proton range verification and quantification of range uncertainties.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Cámaras gamma , Terapia de Protones/métodos , Cintigrafía/métodos , Fraccionamiento de la Dosis de Radiación , Diseño de Equipo , Estudios de Factibilidad , Humanos , Cintigrafía/instrumentación , Planificación de la Radioterapia Asistida por Computador
2.
J Appl Clin Med Phys ; 17(2): 427-440, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074464

RESUMEN

The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Terapia de Protones , Agua/química , Neoplasias de Cabeza y Cuello/patología , Humanos , Estadificación de Neoplasias , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
3.
Med Dosim ; 40(4): 372-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26323390

RESUMEN

Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to compare plans for bowel and rectal volumes exposed to 35% (V35%), 65% (V65%), and 95% (V95%) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V35% rectum, V65% rectum, and V95% rectum; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V95% bowel, V65% bowel, or V35% bowel). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V65% bowel and V95% bowel for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.


Asunto(s)
Carcinoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Vejiga Urinaria/radioterapia , Humanos , Recto , Estudios Retrospectivos
4.
Int J Radiat Oncol Biol Phys ; 91(5): 1057-64, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25832696

RESUMEN

PURPOSE: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LETd) while keeping the radiobiologically weighted dose (DRBE) to the target the same. METHODS AND MATERIALS: The target is painted with LETd by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LETd within the target increases with increasing number of fields, D decreases to maintain the DRBE the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). RESULTS: The LETd increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LETd led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the Drbe at 90% of the volume (Drbe, 90) constant to FTP. CONCLUSIONS: LETd painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.


Asunto(s)
Transferencia Lineal de Energía , Neoplasias de la Próstata/radioterapia , Terapia de Protones/métodos , Humanos , Masculino , Órganos en Riesgo , Neoplasias de la Próstata/patología , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Recto , Efectividad Biológica Relativa , Estudios Retrospectivos , Vejiga Urinaria
5.
J Radiat Res ; 55(2): 364-72, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24309720

RESUMEN

The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.


Asunto(s)
Modelos Biológicos , Modelos Estadísticos , Método de Montecarlo , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Alta Energía/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica
6.
Radiat Oncol ; 8: 144, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23767810

RESUMEN

INTRODUCTION: Post-operative radiotherapy (PORT) for stage IIIA completely-resected non-small cell lung cancer (CR-NSCLC) has been shown to improve local control; however, it is unclear that this translates into a survival benefit. One explanation is that the detrimental effect of PORT on critical organs at risk (OARs) negates its benefit. This study reports an in-silico comparative analysis of passive scattering proton therapy (PSPT)- and intensity modulated proton therapy (IMPT) with intensity modulated photon beam radiotherapy (IMRT) PORT. METHODS: The computed tomography treatment planning scans of ten patients with pathologic stage IIIA CR-NSCLC treated with IMRT were used. IMRT, PSPT, and IMPT plans were generated and analyzed for dosimetric endpoints. The proton plans were constructed with two or three beams. All plans were optimized to deliver 50.4 Gy(RBE) in 1.8 Gy(RBE) fractions to the target volume. RESULTS: IMPT leads to statistically significant reductions in maximum spinal cord, mean lung dose, lung volumes treated to 5, 10, 20, and 30 Gy (V5, V10, V20, V30), mean heart dose, and heart volume treated to 40 Gy (V40), when compared with IMRT or PSPT. PSPT reduced lung V5 but increased lung V20, V30, and heart and esophagus V40. CONCLUSIONS: IMPT demonstrates a large decrease in dose to all OARs. PSPT, while reducing the low-dose lung bath, increases the volume of lung receiving high dose. Reductions are seen in dosimetric parameters predictive of radiation pneumonitis and cardiac morbidity and mortality. This reduction may correlate with a decrease in dose-limiting toxicity and improve the therapeutic ratio.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Estadificación de Neoplasias , Radiometría , Radioterapia Adyuvante/métodos , Estudios Retrospectivos
7.
Health Phys ; 104(5): 471-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23532076

RESUMEN

The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1-3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field.


Asunto(s)
Diseño de Equipo , Traumatismos por Radiación/prevención & control , Protección Radiológica/instrumentación , Experimentación Animal , Animales , Dosis de Radiación , Ratas
8.
Phys Med Biol ; 58(5): 1495-505, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23403457

RESUMEN

Surgically implanted electromagnetic transponders have been used in external beam radiotherapy for target localization and position monitoring in real time. The effect of transponders on proton therapy dose distributions has not been reported. A Monte Carlo implementation of the transponder geometry is validated against film measurements in a proton SOBP and subsequently used to generate dose distributions for transponders at different positions and orientations in the proton SOBP. The maximum dose deficit is extracted in each case. Dose shadows of up to 60% occur for transponders positioned very near the end of range of the Bragg peak. However, if transponders are positioned further than 5 mm from the end of range, and are not oriented parallel to the beam direction, then the dose deficit can be kept below 10%.


Asunto(s)
Artefactos , Equipos y Suministros Eléctricos , Fenómenos Electromagnéticos , Método de Montecarlo , Terapia de Protones/instrumentación , Dosis de Radiación , Dosificación Radioterapéutica
9.
Telemed J E Health ; 17(5): 370-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21492029

RESUMEN

OBJECTIVES: Proton radiotherapy is a relatively scarce treatment modality in radiation oncology, with only nine centers currently operating in the United States. Funded by Public Law 107-248, the University of Pennsylvania and the Walter Reed Army Medical Center have developed a remote proton radiation therapy solution with the goals of improving access to proton radiation therapy for Department of Defense (DoD) beneficiaries while minimizing treatment delays and time spent away from home/work (time savings of up to 3 weeks per patient). MATERIALS AND METHODS: To meet both Health Insurance Portability and Accountability Act guidelines and the more stringent security restrictions imposed by the DoD, our program developed a hybrid remote proton radiation therapy solution merging a CITRIX server with a JITIC-certified (Joint Interoperability Test Command) desktop videoconferencing unit. This conduit, thoroughly tested over a period of 6 months, integrates both institutions' radiation oncology treatment planning infrastructures into a single entity for DoD patients' treatment planning and delivery. RESULTS: This telemedicine solution enables DoD radiation oncologists and medical physicists the ability to (1) remotely access a proton therapy treatment planning platform, (2) transfer patient plans securely to the University of Pennsylvania patient database, and (3) initiate ad-hoc point-to-point and multipoint videoconferences to dynamically optimize and validate treatment plans. CONCLUSIONS: Our robust and secure remote treatment planning solution grants DoD patients not only access to a state-of-the-art treatment modality, but also participation in the treatment planning process by Walter Reed Army Medical Center radiation oncologists and medical physicists. This telemedicine system has the potential to lead to a greater integration of military treatment facilities and/or satellite clinics into regional proton therapy centers.


Asunto(s)
Atención a la Salud/métodos , Neoplasias/radioterapia , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Diseño de Equipo/normas , Humanos , Internet/tendencias , Estados Unidos , Comunicación por Videoconferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...