Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(5): 1331-1346, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37996075

RESUMEN

This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.


Asunto(s)
Magnoliopsida , Populus , Madera , Estaciones del Año , Xilema , Clatrina , Carbohidratos
2.
Postepy Biochem ; 68(1): 15-23, 2022 03 31.
Artículo en Polaco | MEDLINE | ID: mdl-35569046

RESUMEN

Plants possess the ability of indeterminate growth and organogenesis. Uninterrupted development of aerial parts of plants strongly depends on the activity of the shoot apical meristem (SAM), where a pool of undifferentiated stem cells is kept throughout the plant life. The main function of SAM is cell proliferation and self-maintenance. Numerous genes functioning within the SAM have already been discovered, including SHOOTMERISTEMLESS, CLAVATA and WUSCHEL. The biological significance of WUSCHEL gene for specification of the stem cells fate was proven by various, performed over the years experiments. This was doable, also because the research was performed on Arabidopsis thaliana as a model organism. How was the WUSCHEL gene mechanism of action discovered, and subsequently experimentally proven? In this review, we will address these questions, pinpointing also how the use of a model organism enabled WUSCHEL gene functional characterisation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Plantas/metabolismo
3.
Plants (Basel) ; 10(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205276

RESUMEN

Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.

4.
Plant Signal Behav ; 15(12): 1816320, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897774

RESUMEN

RHODOCOCCUS FASCIANS: is a gram-positive phytopathogen that infects a wide range of plant species. The actinomycete induces the formation of neoplastic growths, termed leafy galls, that consist of a gall body covered by small shoots of which the outgrowth is arrested due to an extreme form of apical dominance. In our previous work, we demonstrated that in the developing gall, auxin drives the transdifferentiation of parenchyma cells into vascular elements. In this work, with the use of transgenic Arabidopsis thaliana plants carrying molecular reporters for cell division (pCYCB1;1:GUS) and meristematic activity (pSTM:GUS), we analyzed the fate of cells within the leafy gall. Our results indicate that the size of the gall body is determined by ongoing mitotic cell divisions as illustrated by strong CYCB1;1 expression combined with the de novo formation of new meristematic areas triggered by STM expression. The shoot meristems that develop in the peripheral parts of the gall are originating from high ectopic STM expression. Altogether the presented data provide further insight into the cellular events that accompany the development of leafy galls in response to R. fascians infection.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Hojas de la Planta/microbiología , Tumores de Planta/microbiología , Regiones Promotoras Genéticas/genética , Rhodococcus/fisiología , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/genética , Tumores de Planta/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 20(1)2019 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-30621327

RESUMEN

In the shoot apical meristem (SAM) of Arabidopsis, PIN1-dependent polar auxin transport (PAT) regulates two crucial developmental processes: organogenesis and vascular system formation. However, the knockout mutation in the PIN1 gene does not fully inhibit these two processes. Therefore, we investigated a potential source of auxin for organogenesis and vascularization during inflorescence stem development. We analyzed auxin distribution in wild-type (WT) and pin1 mutant plants using a refined protocol of auxin immunolocalization; auxin activity, with the response reporter pDR5:GFP; and expression of auxin biosynthesis genes YUC1 and YUC4. Our results revealed that regardless of the functionality of PIN1-mediated PAT, auxin is present in the SAM and vascular strands. In WT plants, auxin always accumulates in all cells of the SAM, whereas in pin1 mutants, its localization within the SAM changes ontogenetically and is related to changes in the structure of the vascular system, organogenic activity of SAM, and expression levels of YUC1 and YUC4 genes. Our findings indicate that the presence of auxin in the meristem of pin1 mutants is an outcome of at least two PIN1-independent mechanisms: acropetal auxin transport from differentiated tissues with the use of vascular strands and auxin biosynthesis within the SAM.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Meristema/metabolismo , Mutación/genética , Organogénesis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Inflorescencia/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fenotipo , Xilema/metabolismo
6.
Int J Mol Sci ; 19(3)2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29538317

RESUMEN

Shoot and root apical meristems (SAM and RAM, respectively) are crucial to provide cells for growth and organogenesis and therefore need to be maintained throughout the life of a plant. However, plants lacking the mitochondrial protease AtFTSH4 exhibit an intriguing phenotype of precocious cessation of growth at both the shoot and root apices when grown at elevated temperatures. This is due to the accumulation of internal oxidative stress and progressive mitochondria dysfunction. To explore the impacts of the internal oxidative stress on SAM and RAM functioning, we study the expression of selected meristem-specific (STM, CLV3, WOX5) and cell cycle-related (e.g., CYCB1, CYCD3;1) genes at the level of the promoter activity and/or transcript abundance in wild-type and loss-of-function ftsh4-1 mutant plants grown at 30 °C. In addition, we monitor cell cycle progression directly in apical meristems and analyze the responsiveness of SAM and RAM to plant hormones. We show that growth arrest in the ftsh4-1 mutant is caused by cell cycle dysregulation in addition to the loss of stem cell identity. Both the SAM and RAM gradually lose their proliferative activity, but with different timing relative to CYCB1 transcriptional activity (a marker of G2-M transition), which cannot be compensated by exogenous hormones.


Asunto(s)
Proteínas de Arabidopsis/genética , Proliferación Celular , Meristema/genética , Metaloproteasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Ciclina B/metabolismo , Meristema/crecimiento & desarrollo , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
7.
Planta ; 247(1): 215-228, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28942496

RESUMEN

MAIN CONCLUSION: Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Tumores de Planta/microbiología , Rhodococcus/fisiología , Transducción de Señal , Arabidopsis/citología , Arabidopsis/microbiología , Cámbium/citología , Cámbium/crecimiento & desarrollo , Cámbium/microbiología , Transdiferenciación Celular , Genes Reporteros , Inflorescencia/citología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/microbiología , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Tallos de la Planta/citología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/microbiología , Xilema/citología , Xilema/crecimiento & desarrollo , Xilema/microbiología
8.
Sci Rep ; 6: 28315, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27321362

RESUMEN

The shoot apical meristem (SAM) ensures continuous plant growth and organogenesis. In LD 30 °C, plants lacking AtFTSH4, an ATP-dependent mitochondrial protease that counteracts accumulation of internal oxidative stress, exhibit a puzzling phenotype of premature SAM termination. We aimed to elucidate the underlying cellular and molecular processes that link AtFTSH4 with SAM arrest. We studied AtFTSH4 expression, internal oxidative stress accumulation, and SAM morphology. Directly in the SAM we analysed H2O2 accumulation, mitochondria behaviour, and identity of stem cells using WUS/CLV3 expression. AtFTSH4 was expressed in proliferating tissues, particularly during the reproductive phase. In the mutant, SAM, in which internal oxidative stress accumulates predominantly at 30 °C, lost its meristematic fate. This process was progressive and stage-specific. Premature meristem termination was associated with an expansion in SAM area, where mitochondria lost their functionality. All these effects destabilised the identity of the stem cells. SAM termination in ftsh4 mutants is caused both by internal oxidative stress accumulation with time/age and by the tissue-specific role of AtFTSH4 around the flowering transition. Maintaining mitochondria functionality within the SAM, dependent on AtFTSH4, is vital to preserving stem cell activity throughout development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Meristema/enzimología , Metaloproteasas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Meristema/genética , Metaloproteasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética
9.
Mol Plant ; 9(7): 1028-39, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27109605

RESUMEN

Gene amplification followed by functional diversification is a major force in evolution. A typical example of this is seen in the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, named after the Arabidopsis stem cell regulator WUSCHEL. Here we analyze functional divergence in the WOX gene family. Members of the WUS clade, except the cambium stem cell regulator WOX4, can substitute for WUS function in shoot and floral stem cell maintenance to different degrees. Stem cell function of WUS requires a canonical WUS-box, essential for interaction with TPL/TPR co-repressors, whereas the repressive EAR domain is dispensable and the acidic domain seems only to be required for female fertility. In contrast to the WUS clade, members of the ancient WOX13 and the WOX9 clades cannot support stem cell maintenance. Although the homeodomains are interchangeable between WUS and WOX9 clade members, a WUS-compatible homeodomain together with canonical WUS-box is not sufficient for stem cell maintenance. Our results suggest that WOX function in shoot and floral meristems of Arabidopsis is restricted to the modern WUS clade, suggesting that stem cell control is a derived function. Yet undiscovered functional domains in addition to the homeodomain and the WUS-box are necessary for this function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Células Madre/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/metabolismo , Células Madre/fisiología
10.
FEMS Microbiol Lett ; 342(2): 187-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480693

RESUMEN

The Actinomycete Rhodococcus fascians causes the leafy gall syndrome, an infectious plant disease that affects a wide range of plants, primarily dicotyledonous herbs. The syndrome is associated with delayed senescence, loss of apical dominance, activation of dormant axillary meristems, and formation of multiple inflorescences, leading to a stunted and bushy plant appearance. A major breakthrough in the elucidation of the virulence strategy of this pathogen was the discovery of a linear virulence plasmid, pFiD188 for R. fascians strain D188. Upon perception of a compatible host plant, an autoregulatory mechanism mediated by the att operon directs a switch in the bacterial life style from a harmless epiphyte into a pathogenic endophyte and, concomitantly, activates gene expression of the fas operon that encodes a cytokinin biosynthesis pathway. A mixture of five cytokinins determines the cytokinin activity of R. fascians that directly affects plant responses and development. Moreover, the bacterial cytokinins stimulate the host to produce auxins and polyamines, that function as accessory signals to aid in symptom development. The plant reacts against the developmental hijacking by R. fascians by activating a set of counteracting measures that ultimately results in a delicate balance, allowing a long-lasting biotrophic interaction.


Asunto(s)
Enfermedades de las Plantas/microbiología , Rhodococcus/patogenicidad , Proteínas Bacterianas/genética , Citocininas/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas/genética , Plásmidos , Rhodococcus/genética , Factores de Virulencia/genética
11.
Plant Cell ; 22(3): 716-28, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20228247

RESUMEN

Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Silenciador del Gen , Meristema/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Mapeo Cromosómico , Clonación Molecular , ADN-Topoisomerasas de Tipo I/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Homeodominio/metabolismo , Mutación
12.
Microbiology (Reading) ; 153(Pt 12): 4050-4060, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18048919

RESUMEN

Bacterial chromosomes (though not Escherichia coli and some other gamma-proteobacterial chromosomes) contain parS sequences and parAB genes encoding partitioning proteins, i.e. ParA (ATPase) and ParB (DNA-binding proteins) that are components of the segregation machinery. Here, mycobacterial parABS elements were characterized for the first time. parAB genes are not essential in Mycobacterium smegmatis; however, elimination or overexpression of ParB protein causes growth inhibition. Deletion of parB also leads to a rather severe chromosome segregation defect: up to 10% of the cells were anucleate. Mycobacterial ParB protein uses three oriC-proximal parS sequences as targets to organize the origin region into a compact nucleoprotein complex. Formation of such a complex involves ParB-ParB interactions and is assisted by ParA protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium smegmatis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Medios de Cultivo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Operón , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Origen de Réplica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA