Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274816

RESUMEN

The construction sector is presently among the most resource-intensive industries, driving a substantial body of research dedicated to the development of more sustainable materials to address these demands. A particularly promising approach within the framework of the circular economy is the repurposing of waste as a principal raw material for the creation of new construction products. Within this context, the primary aim of this study is to engineer ceramic materials for brick production using 100% waste-derived inputs, specifically aggregate washing sludge and manganese mining by-products. To evaluate the potential of these sustainable ceramic materials, an extensive investigation was conducted, encompassing both physical and mechanical testing, as well as a thorough characterisation of the waste inputs. For this purpose, a series of ceramic specimens were fabricated with varying proportions of mining residues and aggregate washing sludge, adhering to the conventional protocols employed in the manufacture of ceramic bricks. The results demonstrate that these sustainable ceramics exhibit a linear shrinkage reduction of up to 5% compared to traditional clay-based ceramics. Furthermore, they show water absorption levels-whether via capillarity, cold water, or hot water absorption-that are up to twice those observed in conventional clay ceramics, while maintaining comparable density values. This increased absorption, however, correlates with a reduction in mechanical strength at higher concentrations of manganese waste, yet the material continues to meet the minimum strength requirements as specified by industry standards for such products. In conclusion, this research introduces a novel, sustainable ceramic material that not only reduces economic and environmental costs but also adheres to the required performance criteria for construction applications.

2.
Mol Ther Methods Clin Dev ; 20: 1-17, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33335943

RESUMEN

Fabry disease is a rare X-linked disorder affecting α-galactosidase A, a rate-limiting enzyme in lysosomal catabolism of glycosphingolipids. Current treatments present important limitations, such as low half-life and limited distribution, which gene therapy can overcome. The aim of this work was to test a novel adeno-associated viral vector, serotype 9 (AAV9), ubiquitously expressing human α-galactosidase A to treat Fabry disease (scAAV9-PGK-GLA). The vector was preliminary tested in newborns of a Fabry disease mouse model. 5 months after treatment, α-galactosidase A activity was detectable in the analyzed tissues, including the central nervous system. Moreover, we tested the vector in adult animals of both sexes at two doses and disease stages (presymptomatic and symptomatic) by single intravenous injection. We found that the exogenous α-galactosidase A was active in peripheral tissues as well as the central nervous system and prevented glycosphingolipid accumulation in treated animals up to 5 months following injection. Antibodies against α-galactosidase A were produced in 9 out of 32 treated animals, although enzyme activity in tissues was not significantly affected. These results demonstrate that scAAV9-PGK-GLA can drive widespread and sustained expression of α-galactosidase A, cross the blood brain barrier after systemic delivery, and reduce pathological signs of the Fabry disease mouse model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA