Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1370532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784063

RESUMEN

Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.

2.
Front Plant Sci ; 14: 1024815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875577

RESUMEN

Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different. GC formation is a process of new organogenesis from vascular cells, which are still not well characterized, that differentiate into GCs. In contrast, syncytia formation involves the fusion of adjacent cells that have already differentiated. Nonetheless, both feeding sites show an auxin maximum pertinent to feeding site formation. However, data on the molecular divergences and similarities between the formation of both feeding sites regarding auxin-responsive genes are still scarce. We studied genes from the auxin transduction pathways that are crucial during gall and lateral root (LR) development in the CN interaction by using promoter-reporter (GUS/LUC)transgenic lines, as well as loss of function lines of Arabidopsis. The promoters pGATA23 and several deletions of pmiR390a were active in syncytia, as were in galls, but pAHP6 or putative up-stream regulators as ARF5/7/19 were not active in syncytia. Additionally, none of these genes seemed to play a key role during cyst nematode establishment in Arabidopsis, as the infection rates in loss of function lines did not show significant differences compared to control Col-0 plants. Furthermore, the presence of only canonical AuxRe elements in their proximal promoter regions is highly correlated with their activation in galls/GCs (AHP6, LBD16), but those promoters active in syncytia (miR390, GATA23) carry AuxRe overlapping core cis-elements for other transcription factor families (i.e., bHLH, bZIP). Strikingly, in silico transcriptomic analysis showed very few genes upregulated by auxins common to those induced in GCs and syncytia, despite the high number of upregulated IAA responsive genes in syncytia and galls. The complex regulation of auxin transduction pathways, where different members of the auxin response factor (ARF) family may interact with other factors, and the differences in auxin sensitivity, as indicated by the lower induction of the DR5 sensor in syncytia than galls, among other factors, may explain the divergent regulation of auxin responsive genes in the two types of nematode feeding sites.

3.
Front Plant Sci ; 11: 601558, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329669

RESUMEN

Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops.

4.
Sci Rep ; 10(1): 10645, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606421

RESUMEN

Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA4 biosynthesis. Finally, the overexpression of SlCDF4 also promoted changes in the profile of carbon and nitrogen compounds related to fruit quality. Overall, our results unveil SlCDF4 as a new key factor controlling tomato size and composition.


Asunto(s)
Frutas/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas Represoras/genética , Solanum lycopersicum/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Regulación hacia Arriba
5.
J Exp Bot ; 71(13): 3803-3815, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32072179

RESUMEN

In terrestrial environments, water and nutrient availabilities and temperature conditions are highly variable, and especially in extreme environments limit survival, growth, and reproduction of plants. To sustain growth and maintain cell integrity under unfavourable environmental conditions, plants have developed a variety of biochemical and physiological mechanisms, orchestrated by a large set of stress-responsive genes and a complex network of transcription factors. Recently, cycling DOF factors (CDFs), a group of plant-specific transcription factors (TFs), were identified as components of the transcriptional regulatory networks involved in the control of abiotic stress responses. The majority of the members of this TF family are activated in response to a wide range of adverse environmental conditions in different plant species. CDFs regulate different aspects of plant growth and development such as photoperiodic flowering-time control and root and shoot growth. While most of the functional characterization of CDFs has been reported in Arabidopsis, recent data suggest that their diverse roles extend to other plant species. In this review, we integrate information related to structure and functions of CDFs in plants, with special emphasis on their role in plant responses to adverse environmental conditions.


Asunto(s)
Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Sci ; 277: 242-250, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30466590

RESUMEN

Plants must defend themselves against pathogens. The defense response requires greater protein synthesis, which generates endoplasmic reticulum (ER) stress, yet failure to attenuate this stress has detrimental effects. WRKY7/11/17 transcription factors (TFs) are negative regulators of immunity since mutants are more resistant to Pseudomonas syringae pv tomato (Pst) infection. Here, we reveal a connection between ER-stress and the molecular mechanisms underlying the wrky mutant phenotype. The bZIP28 TF upregulates ER-chaperone expression (BiP1/2, ERdj3B, and SDF2) upon exposure of Arabidopsis to a bacterial defense elicitor, flagellin 22 (Flg22). Also, the activation of ER-chaperones is more sustained in double and triple wrky mutants treated with Flg22, suggesting that WRKY7/11/17 TFs downregulate these genes. Moreover, wrky mutants accumulate more bZIP28 transcripts in response to Flg22, indicating that WRKY7/11/17 transcriptionally repress this TF. Using Arabidopsis protoplasts, we also demonstrate that WRKYs bind to the bZIP28 promoter via W-box elements. Additionally, triple wrky mutants are more resistant, whilst bzip28 mutants are more susceptible, to Pst infection. Finally, we postulate a model of PAMP-Triggered Immunity regulation, where Flg22 activates bZIP28-signaling inducing the expression of ER-stress genes, as well as WRKY7/11/17 expression, which in turn inhibits PTI by downregulating bZIP28, controlling physiological responses in the Arabidopsis-Pst interaction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Pseudomonas syringae/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
7.
J Exp Bot ; 69(3): 619-631, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29309650

RESUMEN

The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Nitratos/metabolismo , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Front Plant Sci ; 8: 660, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28515731

RESUMEN

Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield.

9.
Plant Cell Environ ; 40(5): 748-764, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28044345

RESUMEN

DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including γ-aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Estrés Fisiológico , Factores de Transcripción/metabolismo , Adaptación Fisiológica/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Frío , ADN de Plantas/metabolismo , Sequías , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Presión Osmótica , Fotosíntesis/genética , Análisis de Componente Principal , Unión Proteica , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Azúcares/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Activación Transcripcional/genética
10.
J Exp Bot ; 67(14): 4297-310, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217548

RESUMEN

Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth.


Asunto(s)
Proteasas de Cisteína/fisiología , Hordeum/metabolismo , Proteasas de Cisteína/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Hordeum/enzimología , Hordeum/fisiología , Nitrógeno/deficiencia , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente , Proteolisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Inanición/metabolismo , Estrés Fisiológico/fisiología
11.
Plant Physiol ; 170(4): 2511-24, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26912343

RESUMEN

Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors.


Asunto(s)
Germinación , Hordeum/enzimología , Proteínas de Plantas/metabolismo , Cistatinas/genética , Cistatinas/metabolismo , Grano Comestible/embriología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Expresión Génica , Silenciador del Gen , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , MicroARNs/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteolisis , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...