Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850694

RESUMEN

In the field of mine engineering, a cross-section topographic survey is usually carried out to perform volumetric calculations of earth movement in order to restore areas affected by extractive activities. Nowadays, Remote Sensing and Geographical Information System (GIS) technologies make it possible to perform the same work by using indirect methods such as images obtained by photogrammetric flights. In this context, Unmanned Aerial Systems (UAS) are considered a very convenient option to develop mapping projects in short periods of time and to provide quality geospatial information such as Digital Elevation Models (DEM) and orthophotos of centimetric spatial resolution. In the present study, this approach has been applied in a gravel extraction area to obtain data for estimating the filling volume of material required for the restoration of the relief (DEM(r)). The estimation of the DEM(r) is later used to calculate a difference of height values (DEM(r)-DEM) that will serve as a variable in the basic operation of volume calculation. The novelty of the presented method is the simulation of a relief adapted to the surrounding morphology, including the derived channel network and the visibility impact, improving what would be a simple clogging. Likewise, the generation of 3D models allows visualizing a new morphological structure of the relief. The proposed approach, based on GIS tools, allows analyzing water flow connectivity integration of the DEM(r) with the environment and estimating potential landscape impacts from the main focuses of a visual basin, both of which are key aspects of restoration modeling that are not always properly addressed.

3.
Sci Rep ; 9(1): 6826, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048757

RESUMEN

Biodiversity monitoring at simultaneously fine spatial resolutions and large spatial extents is needed but limited by operational trade-offs and costs. Open-access data may be cost-effective to address those limitations. We test the use of open-access satellite imagery (NDVI texture variables) and biodiversity data, assembled from GBIF, to investigate the relative importance of variables of habitat extent and structure as indicators of bird community richness and dissimilarity in the Alentejo region (Portugal). Results show that, at the landscape scale, forest bird richness is better indicated by the availability of tree cover in the overall landscape than by the extent or structure of the forest habitats. Open-land birds also respond to landscape structure, namely to the spectral homogeneity and size of open-land patches and to the presence of perennial vegetation amid herbaceous habitats. Moreover, structure variables were more important than climate variables or geographic distance to explain community dissimilarity patterns at the regional scale. Overall, summer imagery, when perennial vegetation is more discernible, is particularly suited to inform indicators of forest and open-land bird community richness and dissimilarity, while spring imagery appears to be also useful to inform indicators of open-land bird richness.


Asunto(s)
Aves/clasificación , Bosques , Animales , Biodiversidad , Ecosistema , Región Mediterránea , Portugal
4.
Glob Chang Biol ; 25(8): 2825-2840, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31012512

RESUMEN

The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi-arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long-term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low-frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non-stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non-stationary effects of ENSO can be propagated from tropical areas to semi-arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea-air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long-term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought-prone forests and review the expected impacts of global warming on the profiled mechanisms.


Asunto(s)
Carbono , Bosques , Océano Atlántico , Océanos y Mares , España , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...