Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731365

RESUMEN

Diopatra neapolitana Delle Chiaje, 1841 (Annelida, Onuphidae) is one of the most exploited polychaete species in European waters, particularly in Ria de Aveiro, a coastal lagoon in mainland Portugal, where the overexploitation of this resource has led to a generalized decline of local populations. In an attempt to reduce the impact of harvesting, several management actions were implemented, but illegal poaching still fuels a parallel economy that threatens the sustainable use of this marine resource. The present study evaluated the combination of fatty acid profiles and elemental fingerprints of the whole body and jaws, respectively, of D. neapolitana collected from four harvesting locations within Ria de Aveiro in order to determine if their geographic origin could be correctly assigned post-harvesting. Results showed that both fatty acid profiles and elemental fingerprints differ significantly among locations, discriminating the geographic origin with higher accuracy when combining these two natural barcodes than when employing each individually. The present work can, therefore, contribute to the implementation of an effective management plan for the sustainable use of this marine resource, making it possible to detect if D. neapolitana was sourced from no-take zones and if it was collected from the place of origin claimed by live bait traders.

2.
Front Oncol ; 14: 1380648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606091

RESUMEN

Introduction: In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer. Methods: Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease. Results and discussion: CD20+ T cells were more represented within the CD8+ T cell compartment and they showed a predominant memory Tc1 phenotype. CD20+ T cells were less represented in MBL and CLL patients vs healthy controls, particularly among those with unmutated IGVH gene. The expansion of malignant B cells was accompanied by phenotypic and functional changes in CD20+ T cells, including an increase in follicular helper CD4+ CD20+ T cells and CD20+ Tc1 cells, in addition to the expansion of the TCR Vß 5.1 in CD4+ CD20+ T cells in CLL.

3.
Compr Rev Food Sci Food Saf ; 23(3): e13351, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38682674

RESUMEN

Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.


Asunto(s)
Lipidómica , Lípidos , Persea , Persea/química , Lipidómica/métodos , Lípidos/química , Lípidos/análisis , Valor Nutritivo , Frutas/química , Semillas/química
4.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675566

RESUMEN

Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.


Asunto(s)
Desecación , Lipidómica , Metabolómica , Spirulina , Spirulina/metabolismo , Spirulina/química , Lipidómica/métodos , Metabolómica/métodos , Metaboloma , Lípidos/análisis , Espectrometría de Masas en Tándem/métodos , Liofilización , Microalgas/metabolismo , Microalgas/química
5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542319

RESUMEN

Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Metabolómica/métodos , Metaboloma
6.
Arch Biochem Biophys ; 754: 109956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458481

RESUMEN

Phospholipids are key biomolecules with important roles as components of membranes, lipoproteins and as signalling molecules. However, phospholipids are quite prone to oxidation. Upon oxidation they generate several types of oxidation products including long chain oxidation products, as hydroperoxyl and hydroxy derivatives, and highly reactive oxidation products, like small aldehydes and truncated oxidized phospholipids. The formation of protein adducts with small electrophilic aldehydes (like malondialdehyde) is now well studied, however, the aggregation of proteins with truncated oxidized phospholipids lacks research. This paper provides a short overview of the formation of protein adducts with truncated oxidized phospholipids as well as a gathering of the research on this topic. The literature found reports the synthesis, detection and fragmentation of this type of adducts, mainly focusing on truncated oxidized phospholipid' products from phosphatidylcholine class and few peptides and proteins, as human serum albumin and Apo B100, leaving unattended the screening in vivo and in disease correlation, thus lacking possible association with their biological role. These adducts are a consequence of oxidative modifications to important biomolecules and their involvement in the organism is still unclear, revealing the urgent need for more investigation in this area.


Asunto(s)
Lipoproteínas , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Oxidación-Reducción , Lipoproteínas/metabolismo , Péptidos/metabolismo , Aldehídos/metabolismo
7.
J Inherit Metab Dis ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356271

RESUMEN

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.

8.
Mar Drugs ; 22(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38393044

RESUMEN

Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Humanos , Residuos Industriales
9.
Support Care Cancer ; 32(3): 174, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378875

RESUMEN

PURPOSE: Physical exercise has positive effects on clinical outcomes of breast cancer survivors such as quality of life, fatigue, anxiety, depression, body mass index, and physical fitness. We aimed to study its impact on immune, inflammatory, cardiometabolic, and fatty acids (FA) biomarkers. METHODS: An exploratory sub-analysis of the MAMA_MOVE Gaia After Treatment trial (NCT04024280, registered July 18, 2019) was performed. Blood sample collections occurred during the control phase and at eight weeks of the intervention phase. Samples were subjected to complete leukocyte counts, cytokine, and cardiometabolic marker evaluation using flow cytometry, enzyme-linked immunoassays, and gas chromatography. RESULTS: Ninety-three percent of the 15 participants had body mass index ≥ 25 kg/m2. We observed a decrease of the plasmatic saturated FA C20:0 [median difference - 0.08% (p = 0.048); mean difference - 0.1 (95%CI - 0.1, - 0.0)], positively associated with younger ages. A tendency to increase the saturated FA C18:0 and the ratio of unsaturated/saturated FA and a tendency to decrease neutrophils (within the normal range) and interferon-gamma were observed. CONCLUSIONS: Positive trends of physical exercise on circulating immune cells, inflammatory cytokines, and plasmatic FA were observed. Larger studies will further elucidate the implications of physical exercise on metabolism. These exploratory findings may contribute to future hypothesis-driven research and contribute to meta-analyses.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Enfermedades Cardiovasculares , Humanos , Femenino , Neoplasias de la Mama/terapia , Calidad de Vida , Ácidos Grasos , Ejercicio Físico , Biomarcadores , Citocinas
10.
Sci Rep ; 13(1): 22302, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102403

RESUMEN

Considerable attention has been devoted to investigating the biological activity of microalgal extracts, highlighting their capacity to modulate cellular metabolism. This study aimed to assess the impact of Nannochloropsis oceanica lipid extract on the phospholipid profile of human keratinocytes subjected to UVB radiation. The outcomes revealed that treatment of keratinocytes with the lipid extract from microalgae led to a reduction in sphingomyelin (SM) levels, with a more pronounced effect observed in UVB-irradiated cells. Concomitantly, there was a significant upregulation of ceramides CER[NDS] and CER[NS], along with increased sphingomyelinase activity. Pathway analysis further confirmed that SM metabolism was the most significantly affected pathway in both non-irradiated and UVB-irradiated keratinocytes treated with the microalgal lipid extract. Additionally, the elevation in alkylacylPE (PEo) and diacylPE (PE) species content observed in UVB-irradiated keratinocytes following treatment with the microalgal extract suggested the potential induction of pro-survival mechanisms through autophagy in these cells. Conversely, a noteworthy reduction in LPC content in UVB-irradiated keratinocytes treated with the extract, indicated the anti-inflammatory properties of the lipid extract obtained from microalgae. However, to fully comprehend the observed alterations in the phospholipid profile of UVB-irradiated keratinocytes, further investigations are warranted to identify the specific fraction of compounds responsible for the activity of the Nannochloropsis oceanica extract.


Asunto(s)
Microalgas , Humanos , Lipidómica , Piel/efectos de la radiación , Queratinocitos/metabolismo , Fosfolípidos/metabolismo , Rayos Ultravioleta
11.
Mar Drugs ; 21(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132950

RESUMEN

Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.


Asunto(s)
Microalgas , Estramenopilos , Humanos , Lipopolisacáridos/farmacología , Ciclooxigenasa 2 , Macrófagos , Antiinflamatorios/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
12.
Compr Rev Food Sci Food Saf ; 22(6): 4302-4354, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616018

RESUMEN

Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.


Asunto(s)
Lipidómica , Lípidos , Humanos , Lipidómica/métodos , Ácidos Grasos , Triglicéridos , Frutas
13.
J Proteome Res ; 22(9): 2995-3008, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606915

RESUMEN

Autoimmune diseases (AID), such as systemic lupus erythematosus (SLE) and systemic sclerosis (SS), are complex conditions involving immune system dysregulation. Diagnosis is challenging, requiring biomarkers for improved detection and prediction of relapses. Lipids have emerged as potential biomarkers due to their role in inflammation and immune response. This study uses an untargeted C18 RP-LC-MS lipidomics approach to comprehensively assess changes in lipid profiles in patients with SLE and SS. By analyzing whole blood and plasma, the study aims to simplify the lipidomic analysis, explore cellular-level lipids, and compare lipid signatures of SLE and SS with healthy controls. Our findings showed variations in the lipid profile of SLE and SS. Sphingomyelin and ceramide molecular species showed significant increases in plasma samples from SS patients, suggesting an atherosclerotic profile and potentially serving as lipid biomarkers. Phosphatidylserine species in whole blood from SLE patients exhibited elevated levels supporting previously reported dysregulated processes of cell death and defective clearance of dying cells in this AID. Moreover, decreased phospholipids bearing PUFA were observed, potentially attributed to the degradation of these species through lipid peroxidation processes. Further studies are needed to better understand the role of lipids in the pathological mechanisms underlying SLE and SS.

14.
J Phycol ; 59(5): 1025-1040, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485699

RESUMEN

Marine algae are one of the most important sources of high-value compounds such as polar lipids, omega-3 fatty acids, photosynthetic pigments, or secondary metabolites with interesting features for different niche markets. Acetabularia acetabulum is a macroscopic green single-celled alga, with a single nucleus hosted in the rhizoid. This alga is one of the most studied dasycladalean species and represents an important model system in cell biology studies. However, its lipidome and pigment profile have been overlooked. Total lipid extracts were analyzed using hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS), tandem mass spectrometry (MS/MS), and high-performance liquid chromatography (HPLC). The antioxidant capacity of lipid extracts was tested using DPPH and ABTS assays. Lipidomics identified 16 polar lipid classes, corresponding to glycolipids, betaine lipids, phospholipids, and sphingolipids, with a total of 191 lipid species, some of them recognized by their bioactivities. The most abundant polar lipids were glycolipids. Lipid classes less studied in algae were identified, such as diacylglyceryl-carboxyhydroxymethylcholine (DGCC) or hexosylceramide (HexCer). The pigment profile of A. acetabulum comprised carotenoids (17.19%), namely cis-neoxanthin, violaxanthin, lutein and ß,ß-carotene, and chlorophylls a and b (82.81%). A. acetabulum lipid extracts showed high antioxidant activity promoting a 50% inhibition (IC50 ) with concentrations of 57.91 ± 1.20 µg · mL-1 (438.18 ± 8.95 µmol Trolox · g-1 lipid) in DPPH and 20.55 ± 0.60 µg · mL-1 in ABTS assays (918.56 ± 27.55 µmol Trolox · g-1 lipid). This study demonstrates the potential of A. acetabulum as a source of natural bioactive molecules and antioxidant compounds.


Asunto(s)
Acetabularia , Antioxidantes , Lípidos/análisis , Lipidómica/métodos , Espectrometría de Masas en Tándem , Acetábulo/química , Glucolípidos
15.
PLoS One ; 18(7): e0287986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478051

RESUMEN

Olive oil is one of the most important agricultural products in Mediterranean areas, and currently the European Union is the largest producer. Due to technological innovations, Portugal has become one of the main olive oil producing countries over the last few years, accompanied by large amounts of olive oil pomace (OOP), the most representative residue of the olive oil extraction process. This is causing serious waste management problems since current management solutions also present environmental impacts. Here we explored the black soldier fly (Hermetia illucens) potential to biotransform OOP into valuable insect meals by feeding them OOP-based diets as substrates. Results show that despite survival rates not being affected by higher replacement (75% and 50%) levels of OOP, there was an increase in larval instar duration. Substrate reduction was significantly lower for higher replacement levels but was not affected up to the 50% replacement level. Feed conversion rate differed among all the treatments, increasing as the replacement level increased, while bioconversion rate, which also differed among all the treatments, decreased as replacement level increased. Differences in larval protein content were only seen at higher replacement levels (75%), with an increase in protein content for replacements of up to 25%. One of the most striking results was the change in fatty acid profile, which became more abundant in monounsaturated fatty acids (mostly oleic acid) as the olive pomace replacement levels increased in comparison with the control substrate, rich in saturated fatty acids (palmitic acid). These results show that BSF can be an effective OOP bioconversion agent, and resulting insect meals can be used as alternatives to currently available saturated fatty acid insect meals.


Asunto(s)
Dípteros , Residuos Sólidos , Animales , Aceite de Oliva , Larva , Ácidos Grasos , Comidas
16.
Crit Rev Food Sci Nutr ; : 1-29, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178132

RESUMEN

Tree nuts and oily fruits are used as a diet complement and are highly consumed worldwide. The production and consumption of these foods have been increasing, and an enormous global market value is forecasted for 2023. Besides their high nutritional value and lipid content, they provide health benefits to fat metabolism, heart, skin, and brain. The industrial by-products of these oily foods represent promising raw materials for many industries. However, the lipidomic analysis of nuts and oily fruits is still in its early stages. State-of-the-art analytical approaches for the lipid profiling and fingerprinting of nuts and oily fruits have been developed using high-performance liquid chromatography and high-resolution mass spectrometry for the accurate identification and structural characterization at the molecular species level. It is expected to bring a new understanding of these everyday foods' nutritional and functional value. This review comprises the oil content and lipid composition of various nuts and oily fruits, particularly those mostly consumed worldwide and having recognized beneficial health effects, biological activities associated with the lipids from different oily foodstuffs, analytical methodologies to analyze lipids in nuts and oily fruits, and the potential biotechnological applications of their industrial by-products for a lipid-based commercial valorization.

17.
Foods ; 12(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107420

RESUMEN

The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6 PUFAs. C-Hetero and C-Honey showed a higher content of triacylglycerols. All extracts showed antioxidant and anti-inflammatory activity, highlighting C-Auto with greater potential. Overall, the four strains of C. vulgaris can be selectively chosen as a source of added-value lipids to be used as ingredients in food and nutraceutical applications for different market needs and nutritional requirements.

18.
Biology (Basel) ; 12(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36979106

RESUMEN

Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.

19.
Foods ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36981094

RESUMEN

The potato chip industry generates brownish frying residues, which are usually landfilled. While spent frying oil has value as biodiesel, the defatted brownish water-soluble extract (BrE) does not yet have an application. In this work, it was hypothesized that BrE can be a source of compounds for active packaging. BrE is composed of carbohydrates (66.9%), protein (5.7%), and a small amount of phenolics and esterified fatty acids. When incorporated into starch-based formulations and casted, BrE at 5%, 10%, and 15% w/w (dry starch weight) conferred a yellowish coloration while maintaining the transparency of neat films. The BrE increased the films' traction resistance, elasticity, and antioxidant activity while decreasing their hydrophilicity. Furthermore, starch/15% BrE-based films showed diminished water vapor and good UV-light barrier properties. Their contact with sliced cheese did not change the products' hardness during storage (14 days). Weight loss of the cheese was observed after 7 days of storage, stabilizing at 6.52%, contrary to the cheese packed in polyamide (PA)/polyethylene (PE), already used in food packaging. The cheese packed in the starch/15% BrE-based films showed a significant yellowish darkening and lower content of volatile oxidation products compared to the PA/PE. Therefore, BrE revealed to have compounds with the potential to tune the performance of starch-based films for food packaging.

20.
Food Res Int ; 163: 112227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596156

RESUMEN

Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.


Asunto(s)
Pollos , Fosfolípidos , Humanos , Animales , Femenino , Fosfolípidos/metabolismo , Hidrólisis , Pollos/metabolismo , Fosfolipasas A2/toxicidad , Fosfolipasas A2/metabolismo , Oxidación-Reducción , Línea Celular , Mucosa Intestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...