Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1381040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576791

RESUMEN

In our earlier works, we have shown that the rate-limiting steps, associated with the dark-to-light transition of Photosystem II (PSII), reflecting the photochemical activity and structural dynamics of the reaction center complex, depend largely on the lipidic environment of the protein matrix. Using chlorophyll-a fluorescence transients (ChlF) elicited by single-turnover saturating flashes, it was shown that the half-waiting time (Δτ 1/2) between consecutive excitations, at which 50% of the fluorescence increment was reached, was considerably larger in isolated PSII complexes of Thermostichus (T.) vulcanus than in the native thylakoid membrane (TM). Further, it was shown that the addition of a TM lipid extract shortened Δτ 1/2 of isolated PSII, indicating that at least a fraction of the 'missing' lipid molecules, replaced by detergent molecules, caused the elongation of Δτ 1/2. Here, we performed systematic experiments to obtain information on the nature of TM lipids that are capable of decreasing Δτ 1/2. Our data show that while all lipid species shorten Δτ 1/2, the negatively charged lipid phosphatidylglycerol appears to be the most efficient species - suggesting its prominent role in determining the structural dynamics of PSII reaction center.

2.
Photosynth Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662326

RESUMEN

It has been thoroughly documented, by using 31P-NMR spectroscopy, that plant thylakoid membranes (TMs), in addition to the bilayer (or lamellar, L) phase, contain at least two isotropic (I) lipid phases and an inverted hexagonal (HII) phase. However, our knowledge concerning the structural and functional roles of the non-bilayer phases is still rudimentary. The objective of the present study is to elucidate the origin of I phases which have been hypothesized to arise, in part, from the fusion of TMs (Garab et al. 2022 Progr Lipid Res 101,163). We take advantage of the selectivity of wheat germ lipase (WGL) in eliminating the I phases of TMs (Dlouhý et al. 2022 Cells 11: 2681), and the tendency of the so-called BBY particles, stacked photosystem II (PSII) enriched membrane pairs of 300-500 nm in diameter, to form large laterally fused sheets (Dunahay et al. 1984 BBA 764: 179). Our 31P-NMR spectroscopy data show that BBY membranes contain L and I phases. Similar to TMs, WGL selectively eliminated the I phases, which at the same time exerted no effect on the molecular organization and functional activity of PSII membranes. As revealed by sucrose-density centrifugation, magnetic linear dichroism spectroscopy and scanning electron microscopy, WGL disassembled the large laterally fused sheets. These data provide direct experimental evidence on the involvement of I phase(s) in the fusion of stacked PSII membrane pairs, and strongly suggest the role of non-bilayer lipids in the self-assembly of the TM system.

3.
Front Plant Sci ; 14: 1221519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250442

RESUMEN

Introduction: Zinc finger protein 3 (ZFP3) and closely related C2H2 zinc finger proteins have been identified as regulators of abscisic acid signals and photomorphogenic responses during germination. Whether ZFP3 and related ZFP factors regulate plant development is, however, not known. Results: ZFP3 overexpression reduced plant growth, limited cell expansion in leaves, and compromised root hair development. The T-DNA insertion zfp3 mutant and transgenic lines with silenced ZFP1, ZFP3, ZFP4, and ZFP7 genes were similar to wild-type plants or had only minor differences in plant growth and morphology, probably due to functional redundancy. RNAseq transcript profiling identified ZFP3-controlled gene sets, including targets of ABA signaling with reduced transcript abundance. The largest gene set that was downregulated by ZFP3 encoded regulatory and structural proteins in cell wall biogenesis, cell differentiation, and root hair formation. Chromatin immunoprecipitation confirmed ZFP3 binding to several target promoters. Discussion: Our results suggest that ZFP3 and related ZnF proteins can modulate cellular differentiation and plant vegetative development by regulating the expression of genes implicated in cell wall biogenesis.

4.
Plant Physiol ; 189(2): 827-838, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302607

RESUMEN

In cyanobacteria, phycobilisomes (PBS) serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of PBS, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. PBS are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here, we compared the composition and light-harvesting function of PBS in cells of Synechocystis sp. PCC 6803, which has primarily trimeric PSI, and the ΔpsaL mutant, which lacks the PsaL subunit of PSI and is unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI. Both strains with monomeric PSI accumulated significantly more allophycocyanin per chlorophyll, indicating higher abundance of PBS. On the other hand, a higher phycocyanin:allophycocyanin ratio in the wild type suggests larger PBS or the presence of APC-less PBS (CpcL-type) that are not assembled in cells with monomeric PSI. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the PBS at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the oligomeric state of PSI impacts the excitation energy flow in Synechocystis.


Asunto(s)
Ficobilisomas , Synechocystis , Transferencia de Energía , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/metabolismo , Espectrometría de Fluorescencia , Synechocystis/genética , Synechocystis/metabolismo
5.
Front Plant Sci ; 12: 725699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868111

RESUMEN

The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.

6.
Cells ; 10(9)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34572012

RESUMEN

In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.


Asunto(s)
Lípidos/genética , Tilacoides/genética , Dicroismo Circular/métodos , Espectroscopía de Resonancia Magnética/métodos , Microscopía Electrónica/métodos , Fotosíntesis/genética
7.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209175

RESUMEN

Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer's disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aß). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aß pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE-heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aß uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aß, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aß aggregated: while ApoE2 reduced the uptake of Aß aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4's tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aß pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Agregado de Proteínas , Sindecano-3/metabolismo , Línea Celular Tumoral , Humanos , Isoformas de Proteínas
8.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915930

RESUMEN

The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.


Asunto(s)
Antifúngicos/síntesis química , Candida/efectos de los fármacos , Medicago truncatula/química , Proteínas Citotóxicas Formadoras de Poros/química , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Fluconazol , Células HaCaT , Humanos , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacología
9.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019674

RESUMEN

The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.


Asunto(s)
Arabidopsis/genética , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Proteínas Serina-Treonina Quinasas/genética , Plantones/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/enzimología , Cotiledón/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Giberelinas/metabolismo , Giberelinas/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutagénesis Insercional , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
10.
PLoS One ; 15(7): e0236842, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730363

RESUMEN

Cyanobacteria can form biofilms in nature, which have ecological roles and high potential for practical applications. In order to study them we need biofilm models that contain healthy cells and can withstand physical manipulations needed for structural studies. At present, combined studies on the structural and physiological features of axenic cyanobacterial biofilms are limited, mostly due to the shortage of suitable model systems. Here, we present a simple method to establish biofilms using the cyanobacterium Synechocystis PCC6803 under standard laboratory conditions to be directly used for photosynthetic activity measurements and scanning electron microscopy (SEM). We found that glass microfiber filters (GMF) with somewhat coarse surface features provided a suitable skeleton to form Synechocystis PCC6803 biofilms. Being very fragile, untreated GMFs were unable to withstand the processing steps needed for SEM. Therefore, we used polyhydroxybutyrate coating to stabilize the filters. We found that up to five coats resulted in GMF stabilization and made possible to obtain high resolution SEM images of the structure of the surface-attached cells and the extensive exopolysaccharide and pili network, which are essential features of biofilm formation. By using pulse-amplitude modulated variable chlorophyll fluorescence imaging, it was also demonstrated that the biofilms contain photosynthetically active cells. Therefore, the Synechocystis PCC6803 biofilms formed on coated GMFs can be used for both structural and functional investigations. The model presented here is easy to replicate and has a potential for high-throughput studies.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Membrana Celular/metabolismo , Microscopía Electrónica de Rastreo/métodos , Polisacáridos Bacterianos/metabolismo , Synechocystis/crecimiento & desarrollo , Synechocystis/ultraestructura , Membrana Celular/ultraestructura , Polisacáridos Bacterianos/ultraestructura , Synechocystis/metabolismo
11.
Sci Rep ; 9(1): 16543, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719623

RESUMEN

Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.


Asunto(s)
Endocitosis , Sindecanos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Humanos , Células K562 , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Sindecanos/química , alfa-Sinucleína/química , Proteínas tau/química
12.
Sci Rep ; 9(1): 1393, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718543

RESUMEN

Intraneuronal accumulation of amyloid-ß(1-42) (Aß1-42) is one of the earliest signs of Alzheimer's disease (AD). Cell surface heparan sulfate proteoglycans (HSPGs) have profound influence on the cellular uptake of Aß1-42 by mediating its attachment and subsequent internalization into the cells. Colocalization of amyloid plaques with members of the syndecan family of HSPGs, along with the increased expression of syndecan-3 and -4 have already been reported in postmortem AD brains. Considering the growing evidence on the involvement of syndecans in the pathogenesis of AD, we analyzed the contribution of syndecans to cellular uptake and fibrillation of Aß1-42. Among syndecans, the neuron specific syndecan-3 isoform increased cellular uptake of Aß1-42 the most. Kinetics of Aß1-42 uptake also proved to be fairly different among SDC family members: syndecan-3 increased Aß1-42 uptake from the earliest time points, while other syndecans facilitated Aß1-42 internalization at a slower pace. Internalized Aß1-42 colocalized with syndecans and flotillins, highlighting the role of lipid-rafts in syndecan-mediated uptake. Syndecan-3 and 4 also triggered fibrillation of Aß1-42, further emphasizing the pathophysiological relevance of syndecans in plaque formation. Overall our data highlight syndecans, especially the neuron-specific syndecan-3 isoform, as important players in amyloid pathology and show that syndecans, regardless of cell type, facilitate key molecular events in neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Endocitosis , Fragmentos de Péptidos/metabolismo , Sindecanos/metabolismo , Péptidos beta-Amiloides/ultraestructura , Línea Celular , Humanos , Células K562 , Cinética , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/ultraestructura , Dominios Proteicos , Sindecanos/química
13.
J Plant Physiol ; 223: 96-104, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29558689

RESUMEN

Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.


Asunto(s)
División Celular , Fosfatidilgliceroles/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/fisiología , Transporte de Electrón
14.
Biochim Biophys Acta Bioenerg ; 1858(5): 337-350, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28188782

RESUMEN

Polyunsaturated lipids are important components of photosynthetic membranes. Xanthophylls are the main photoprotective agents, can assist in protection against light stress, and are crucial in the recovery from photoinhibition. We generated the xanthophyll- and polyunsaturated lipid-deficient ROAD mutant of Synechocystis sp. PCC6803 (Synechocystis) in order to study the little-known cooperative effects of lipids and carotenoids (Cars). Electron microscopic investigations confirmed that in the absence of xanthophylls the S-layer of the cellular envelope is missing. In wild-type (WT) cells, as well as the xanthophyll-less (RO), polyunsaturated lipid-less (AD), and the newly constructed ROAD mutants the lipid and Car compositions were determined by MS and HPLC, respectively. We found that, relative to the WT, the lipid composition of the mutants was remodeled and the Car content changed accordingly. In the mutants the ratio of non-bilayer-forming (NBL) to bilayer-forming (BL) lipids was found considerably lower. Xanthophyll to ß-carotene ratio increased in the AD mutant. In vitro and in vivo methods demonstrated that saturated, monounsaturated lipids and xanthophylls may stabilize the trimerization of Photosystem I (PSI). Fluorescence induction and oxygen-evolving activity measurements revealed increased light sensitivity of RO cells compared to those of the WT. ROAD showed a robust increase in light susceptibility and reduced recovery capability, especially at moderate low (ML) and moderate high (MH) temperatures, indicating a cooperative effect of xanthophylls and polyunsaturated lipids. We suggest that both lipid unsaturation and xanthophylls are required for providing the proper structure and functioning of the membrane environment that protects against light and temperature stress.


Asunto(s)
Membrana Celular/efectos de la radiación , Luz , Lípidos de la Membrana/efectos de la radiación , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/efectos de la radiación , Estrés Fisiológico , Synechocystis/efectos de la radiación , Temperatura , Xantófilas/efectos de la radiación , Adaptación Fisiológica , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Genotipo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/efectos de la radiación , Lípidos de la Membrana/metabolismo , Mutación , Fenotipo , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/ultraestructura , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Factores de Tiempo , Xantófilas/genética , Xantófilas/metabolismo , beta Caroteno/metabolismo , beta Caroteno/efectos de la radiación
15.
Biochim Biophys Acta ; 1847(10): 1153-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26045333

RESUMEN

In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of photosynthetic complexes in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803. Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosystems I and II. This is remarkable because these complexes do not bind xanthophylls. Oligomerization is even more disturbed in crtH mutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes are distorted despite the fact that these extramembranous light-harvesting complexes do not contain carotenoids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and functional organization of the cyanobacterial photosynthetic machinery.

16.
Plant Cell Physiol ; 56(3): 558-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520404

RESUMEN

In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (ΔpsaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30°C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ΔpsaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of ß-carotene. The measured H2O→CO2 oxygen evolution rates in the ΔpsaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure.


Asunto(s)
Calor , Complejo de Proteína del Fotosistema I/metabolismo , Multimerización de Proteína , Synechocystis/crecimiento & desarrollo , Synechocystis/metabolismo , Xantófilas/biosíntesis , Procesos Autotróficos , Carotenoides/metabolismo , Cromatografía por Intercambio Iónico , Dicroismo Circular , Silenciador del Gen , Genes Bacterianos , Prueba de Complementación Genética , Mutación/genética , Oxígeno/metabolismo , Procesos Fototróficos , Synechocystis/citología , Synechocystis/ultraestructura , Tilacoides/metabolismo
17.
Proteomics ; 14(9): 1053-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574175

RESUMEN

We present a proteomics dataset combining SDS-PAGE prefractionation and data-dependent LC-MS/MS that enables the identification of phosphatidylglycerol-regulated proteins in the pgsA(-) mutant of Synechocystis sp. PCC6803, a cyanobacterium strain that grows with this indispensable phospholipid added exogenously. We searched the acquired raw data against a composite protein sequence database of Synechocystis using MASCOT, and employed Progenesis LC-MS software for label-free quantification based on extracted peptide intensities to detect changes in protein abundances upon phospholipid withdrawal. Protein identifications were validated using rigorous criteria, and our analysis of the dataset revealed 80 phosphatidylglycerol-regulated proteins involved in various cellular processes including photosynthesis, respiration, metabolism, transport, transcription, and translation. The data have been deposited to the ProteomeXchange with identifier PXD000363 (http://proteomecentral.proteomexchange.org/dataset/PXD000363).


Asunto(s)
Proteínas Bacterianas/análisis , Fosfatidilgliceroles/metabolismo , Proteoma/análisis , Proteómica/métodos , Synechocystis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cromatografía Liquida/métodos , Proteoma/química , Proteoma/metabolismo , Synechocystis/metabolismo , Espectrometría de Masas en Tándem/métodos
18.
Prog Lipid Res ; 52(4): 539-61, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23896007

RESUMEN

Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.


Asunto(s)
Carotenoides/biosíntesis , Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Carotenoides/química , Cianobacterias/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Sustancias Protectoras/química , Sustancias Protectoras/metabolismo , Xantófilas/biosíntesis , Xantófilas/química
19.
Physiol Plant ; 147(2): 248-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22582961

RESUMEN

Influence of the modification of the cyanobacterial light-harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS-less), CK (phycocyanin-less), BE (PSII-PBS-less) and PSI-less/apcE(-) (PSI-less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen-evolving activity, P700 kinetics and energy transfer between the pigment-protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS-PSII macrocomplex (BE mutant) or PSI complex (PSI-less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen-evolving PSII centers depends on the partial or complete elimination of light-harvesting complexes, as the slow operating PSII centers dominate in the PBS-less mutant and in the mutant with detached PBS.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Synechocystis/genética , Tilacoides/fisiología , Fenómenos Electrofisiológicos , Eliminación de Gen , Microscopía Electrónica , Oxidación-Reducción , Oxígeno/análisis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Synechocystis/fisiología , Synechocystis/ultraestructura
20.
Biochim Biophys Acta ; 1817(2): 287-97, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22037395

RESUMEN

Functional roles of an anionic lipid phosphatidylglycerol (PG) were studied in pgsA-gene-inactivated and cdsA-gene-inactivated/phycobilisome-less mutant cells of a cyanobacterium Synechocystis sp. PCC 6803, which can grow only in PG-supplemented media. 1) A few days of PG depletion suppressed oxygen evolution of mutant cells supported by p-benzoquinone (BQ). The suppression was recovered slowly in a week after PG re-addition. Measurements of fluorescence yield indicated the enhanced sensitivity of Q(B) to the inactivation by BQ. It is assumed that the loss of low-affinity PG (PG(L)) enhances the affinity for BQ that inactivates Q(B). 2) Oxygen evolution without BQ, supported by the endogenous electron acceptors, was slowly suppressed due to the direct inactivation of Q(B) during 10 days of PG depletion, and was recovered rapidly within 10h upon the PG re-addition. It is concluded that the loss of high-affinity PG (PG(H)) displaces Q(B) directly. 3) Electron microscopy images of PG-depleted cells showed the specific suppression of division of mutant cells, which had developed thylakoid membranes attaching phycobilisomes (PBS). 4) Although the PG-depletion for 14 days decreased the chlorophyll/PBS ratio to about 1/4, flourescence spectra/lifetimes were not modified indicating the flexible energy transfer from PBS to different numbers of PSII. Longer PG-depletion enhanced allophycocyanin fluorescence at 683nm with a long 1.2ns lifetime indicating the suppression of energy transfer from PBS to PSII. 5) Action sites of PG(H), PG(L) and other PG molecules on PSII structure are discussed.


Asunto(s)
Fosfatidilgliceroles/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Benzoquinonas/antagonistas & inhibidores , Benzoquinonas/metabolismo , Sitios de Unión/efectos de los fármacos , Catálisis/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Cristalografía por Rayos X , Transporte de Electrón/efectos de los fármacos , Modelos Biológicos , Modelos Moleculares , Organismos Modificados Genéticamente , Oxígeno/metabolismo , Oxígeno/farmacología , Fosfatidilgliceroles/química , Fosfatidilgliceroles/farmacología , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Unión Proteica/efectos de los fármacos , Synechocystis/citología , Synechocystis/efectos de los fármacos , Synechocystis/genética , Synechocystis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...