Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749678

RESUMEN

AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.


Asunto(s)
Aspergillus , Medios de Cultivo , Gases em Plasma , Aspergillus/crecimiento & desarrollo , Aspergillus/efectos de los fármacos , Gases em Plasma/farmacología , Modelos Biológicos , Temperatura , Agar
2.
Sci Rep ; 14(1): 11482, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769352

RESUMEN

Presented paper deals with a novel application of the (nonlinear) logistic equation to model an elimination of microscopic filaments types of fungi-molds from affected materials via different external inactivation techniques. It is shown that if the inactivation rate of the external source is greater than the maximum natural growth rate of mycelium, the mold colony becomes destroyed after a finite time. Otherwise, the mycelium may survive the external attack only at a sufficiently large initial concentration of the inoculum. Theoretically determined growth curves are compared with the experimental data for Aspergillus brasiliensis mold inactivated by using both cold atmospheric plasma (CAP) and UV-germicidal lamp. Model presented in the article may be applied also to other classes of microorganisms (e.g. bacteria).


Asunto(s)
Aspergillus , Aspergillus/crecimiento & desarrollo , Aspergillus/fisiología , Hongos , Gases em Plasma/farmacología , Rayos Ultravioleta , Modelos Biológicos , Micelio/crecimiento & desarrollo
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111792, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579442

RESUMEN

A unique composite nanodiamond-based porous material with a hierarchically-organized submicron-nano-structure was constructed for potential bone tissue engineering. This material consisted of submicron fibers prepared by electrospinning of silicon oxide (SiOx), which were oxygen-terminated (O-SiOx) and were hermetically coated with nanocrystalline diamond (NCD) films. The NCD films were then terminated with hydrogen (H-NCD) or oxygen (O-NCD). The materials were tested as substrates for the adhesion, growth and osteogenic differentiation of human osteoblast-like Saos-2 cells. The number and the spreading area of the initially adhered cells, their growth rate during 7 days after seeding and the activity of alkaline phosphatase (ALP) were significantly higher on the NCD-coated samples than on the uncoated O-SiOx samples. In addition, the concentration of type I collagen was significantly higher in the cells on the O-NCD-coated samples than on the bare O-SiOx samples. The observed differences could be attributed to the tunable wettability of NCD and to the more appropriate surface morphology of the NCD-coated samples in contrast to the less stable, rapidly eroding bare SiOx surface. The H-NCD coatings and the O-NCD coatings both promoted similar initial adhesion of Saos-2 cells, but the subsequent cell proliferation activity was higher on the O-NCD-coated samples. The concentration of beta-actin, vinculin, type I collagen and alkaline phosphatase (ALP), the ALP activity, and also the calcium deposition tended to be higher in the cells on the O-NCD-coated samples than on the H-NCD-coated samples, although these differences did not reach statistical significance. The improved cell performance on the O-NCD-coated samples could be attributed to higher wettability of these samples (water drop contact angle less than 10°), while the H-NCD-coated samples were hydrophobic (contact angle >70°). NCD-coated porous SiOx meshes can therefore be considered as appropriate scaffolds for bone tissue engineering, particularly those with an O-terminated NCD coating.


Asunto(s)
Diamante , Osteogénesis , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Materiales Biocompatibles Revestidos/farmacología , Humanos , Osteoblastos
4.
ACS Omega ; 4(5): 8441-8450, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459933

RESUMEN

Synthetic diamond films are routinely grown using chemical vapor deposition (CVD) techniques. Due to their extraordinary combination of intrinsic properties, they are used as the functional layers in various bio-optoelectronic devices. It is a challenge to grow the dimensional layers or porous structures that are required. This study reviews the fabrication of various porous diamond-based structures using linear antenna microwave plasma (LAMWP) chemical vapor deposition (CVD), a low-cost technology for growing diamond films over a large area (>1 m2) at low pressure (<100 Pa) and at low temperature (even at 350 °C). From a technological point of view, two different approaches, i.e., templated diamond growth using three different prestructured (macro-, micro-, and nanosized) porous substrates and direct bottom-up growth of ultra-nanoporous diamond (block-stone and dendritelike) films, are successfully employed to form diamond-based structures with controlled porosity and an enhanced surface area. As a bottom-up strategy, the LAMWP CVD system allows diamond growth at as high as 80% CO2 in the CH4/CO2/H2 gas mixture. In summary, the low-pressure and cold plasma conditions in the LAMWP system facilitate the growth on three-dimensionally prestructured substrates of various materials that naturally form porous self-standing diamond structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA