Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; : e14440, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896835

RESUMEN

PURPOSE: CBCT-guided online-adaptive radiotherapy (oART) systems have been made possible by using artificial intelligence and automation to substantially reduce treatment planning time during on-couch adaptive sessions. Evaluating plans generated during an adaptive session presents significant challenges to the clinical team as the planning process gets compressed into a shorter window than offline planning. We identified MU variations up to 30% difference between the adaptive plan and the reference plan in several oART sessions that caused the clinical team to question the accuracy of the oART dose calculation. We investigated the cause of MU variation and the overall accuracy of the dose delivered when MU variations appear unnecessarily large. METHODS: Dosimetric and adaptive plan data from 604 adaptive sessions of 19 patients undergoing CBCT-guided oART were collected. The analysis included total MU per fraction, planning target volume (PTV) and organs at risk (OAR) volumes, changes in PTV-OAR overlap, and DVH curves. Sessions with MU greater than two standard deviations from the mean were reoptimized offline, verified by an independent calculation system, and measured using a detector array. RESULTS: MU variations relative to the reference plan were normally distributed with a mean of -1.0% and a standard deviation of 11.0%. No significant correlation was found between MU variation and anatomic changes. Offline reoptimization did not reliably reproduce either reference or on-couch total MUs, suggesting that stochastic effects within the oART optimizer are likely causing the variations. Independent dose calculation and detector array measurements resulted in acceptable agreement with the planned dose. CONCLUSIONS: MU variations observed between oART plans were not caused by any errors within the oART workflow. Providers should refrain from using MU variability as a way to express their confidence in the treatment planning accuracy. Clinical decisions during on-couch adaptive sessions should rely on validated secondary dose calculations to ensure optimal plan selection.

2.
Clin Case Rep ; 12(5): e8868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756618

RESUMEN

Key Clinical Message: A patient presented with cardiogenic shock, requiring the implantation of a left ventricular assist device (LVAD), and acute myeloblastic leukemia. This necessitated total body irradiation (TBI) while balancing dose reduction to the LVAD components to avoid potential radiation damage. Here we outline our treatment approach and dose estimates to the LVAD. Abstract: This case report discusses the delivery of TBI to a patient with an LVAD. This treatment required radiation-dose determinations and consequential reductions for the heart, LVAD, and an external controller connected to the LVAD. The patient was treated using a traditional 16MV anterior posterior (AP)/posterior anterior (PA) technique at a source-to-surface-distance of 515 cm for 400 cGy in two fractions. A 3 cm thick Cerrobend block was placed on the beam spoiler to reduce dose to the heart and LVAD to 150 cGy. The external controller was placed in a 1 cm thick acrylic box to reduce neutron dose and positioned as far from the treatment fields as achievable. In vivo measurements were made using optically stimulated luminescence dosimeters (OSLDs) placed inside the box at distances of 2 cm, 8.5 cm, and 14 cm from the field edge, and on the patient along the central axis and centered behind the LVAD block. Further ion chamber measurements were made using a solid water phantom to more accurately estimate the dose delivered to the LVAD. Neutron dose measurements were also conducted. The total estimated dose to the controller ranged from 135.3 cGy to 91.5 cGy. The LVAD block reduced the surface dose to the patient to 271.6 cGy (68.1%). The block transmission factors of the 3 cm Cerrobend block measured in the phantom were 45% at 1 cm depth and decreased asymptotically to around 30% at 3 cm depth. Applying these transmission factors to the in vivo measurements yielded a dose of 120 cGy to the implanted device. The neutron dose the LVAD region is estimated around 0.46 cGy. Physical limitations of the controller made it impossible to completely avoid dose. Shielding is recommended. The block had limited dose reduction to the surface, due to secondary particles, but appropriately reduced the dose at 3 cm and beyond. More research on LVADs dose limits would be beneficial.

3.
Med Phys ; 47(11): 5906-5918, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996168

RESUMEN

PURPOSE: Recently a novel radiochromic sheet dosimeter, termed as PRESAGE sheets, consisting of leuco crystal violet dye and radical initiator had been developed and characterized. This study examines the dosimeter's temporal stability and storage temperature dependence postirradiation, and its applicability for dose verification in three dimensions (3D) as a stack dosimeter. METHODS: PRESAGE sheets were irradiated using 6 MV photons at a dose range of 0-20 Gy with the change in optical density measured using a flatbed scanner. Following their irradiation, PRESAGE sheets were stored in different temperature environments (-18 °C, 4 °C, and 22 °C) and scanned at different time points, ranging from 1 to 168 h postirradiation, to track changes in measured signal and linearity of dose response. Multiple PRESAGE sheets were bound together to create a 12 × 13 × 8.7 cm3 film stack, with EBT3 film inserted between the sheets in the central region of the stack, that was treated using a clinical VMAT plan. Based on the results from the time and storage temperature study, two-dimensional (2D) relative dose distribution measurements in PRESAGE were acquired promptly following irradiation at selected planes in the coronal, sagittal, and axial orientation of the film stack and compared to the treatment planning system calculations in their respective axes. Dose distribution measurements on the coronal axis of the stack dosimeter were also independently verified using EBT3 film. RESULTS: The dose response was observed to be linear (R2 > 0.995) with sheets stored in colder temperatures retaining their signal and dose response sensitivity for extended periods postirradiation. Sheets stored in 22 °C environment should be measured within an hour postirradiation. Sheets stored in a 4 °C and -18 °C environment can be scanned up to 20- and 72 h postirradiation, respectively, while preserving the integrity of their dose response sensitivity and linearity of dose response within a mean absolute percent error of 2.0%. For instance, at 20 h postirradiation the dose response sensitivity for sheets stored in a -18 °C, 4 °C, and 22 °C temperature environment was measured to be 97%, 91%, and 77% of their original values measured within an hour postirradiation, respectively. The 2D gamma pass rate for central slices exceed 95% for PRESAGE film stack compared with treatment planning system on selected planes in the axial, coronal, and sagittal orientation and EBT3 film in the coronal orientation using a 2D gamma index of 2%/2mm. The gamma pass rate in comparing the calculated dose distribution with the measured dose distribution from PRESAGE-LCV was observed to decrease in sheets scanned at later elapsed times postirradiation. In one example, the gamma pass rate for 2%/2mm criteria in the coronal plane was observed to decrease from 97.7% pass rate when scanned within an hour postirradiation to 92.1% pass rate when scanned at 20 h postirradiation under room temperature conditions. CONCLUSIONS: This is the first study to demonstrate that the temporal stability of PRESAGE sheets can be enhanced through its storage in colder temperature environments postirradiation and that sheets as a film stack dosimeter hold promise for precise relative dose distribution measurements in 3D where advanced optical CT is unavailable.


Asunto(s)
Fotones , Dosímetros de Radiación , Dosimetría por Película , Radiometría , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...