Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 53(16): 8809-15, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25090454

RESUMEN

We report the formation, structures, temperature-dependent phase transitions, and high-temperature reactivity of the potential proton and oxide ion conductors BaCe(1-x)M(x)O3 (M(3+) = In(3+), La(3+)). The present in situ diffraction studies show oxidative platinum uptake at temperatures as low as 950 °C into BaCeO3, forming the cubic Ba2CePtO6 double perovskite. The transient B-site double perovskite expels platinum at around 1200-1250 °C. Platinum oxidation via BaCeO3 is investigated by in situ powder X-ray and neutron diffraction experiments in various atmospheres. Doped BaCe(1-x)M(x)O3 phases show the formation of Ba2CePtO6 without incorporating the M(3+) dopant. Oxidative platinum uptake is also observed during the synthesis of BaCeO3 on platinum metal. We report the reaction pathway for the low-temperature oxidative formation of Ba2CePtO6 and the subsequent liberation of platinum for the barium cerate system. The findings are supported by ambient-temperature X-ray diffraction, in situ powder X-ray, and powder neutron diffraction as well as XPS.

2.
Inorg Chem ; 51(4): 2638-44, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22288463

RESUMEN

The local and average crystal structures and magnetic properties of the oxygen-deficient perovskite Sr(2)Fe(1.5)Cr(0.5)O(5+y) were studied using powder X-ray and neutron diffraction, neutron-pair distribution function analysis, and electron energy-loss spectroscopy. This material crystallizes in the cubic Pm3m space group, with a = 3.94491(14) Å. The oxygen vacancies are distributed randomly throughout the perovskite-type structure, and the average coordination number of the Fe(Cr) sites is 5. Refinement of the neutron diffraction data indicates y ∼ 0.05. This is in discordance with an earlier report on a material with the same nominal composition and cell constant. Electron energy-loss Cr L(2,3)-edge spectroscopy shows that Cr(3+) is present, which is also contrary to previous speculation. Neutron-pair distribution function studies show that a brownmillerite-like model involving ordered vacancies and alternating octahedral and tetrahedral coordination at the metal sites, gives a better description of the local structure out to ∼5 Å. A remarkable phenomenon determined by neutron diffraction in Sr(2)Fe(1.5)Cr(0.5)O(5) is the occurrence of a long-range G-type antiferromagnetic ordering with T(c) ≈ 565 K because cubic oxygen-deficient perovskites with B-site disorder usually do not undergo transitions to magnetically ordered states. The observation of long-range antiferromagnetic order and the T(c) value are in accordance with previous Mössbauer spectroscopic studies.

3.
J Am Chem Soc ; 134(6): 3215-27, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22239480

RESUMEN

Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca(2)Fe(2-x)Mn(x)O(5) and CaSrFe(2-x)Mn(x)O(5+y), where x = 1/2, 2/3, and 1 and y ≈ 0-0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y ≈ 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations. However, there is a change in symmetry from Pnma to Icmm upon substitution of Sr for one Ca for all x, indicating local T(d) chain (vacancy) disorder. In the special case of CaSrFeMnO(5) the neutron diffraction peaks broaden, indicating only short-range structural order on a length scale of ~160 Å. This reveals a systematic progression from Ca(2)FeMnO(5) (Pnma, well-ordered tetrahedral chains) to CaSrFeMnO(5) (Icmm, disordered tetrahedral chains, overall short-range order) to Sr(2)FeMnO(5) (Pm3m, destruction of tetrahedral chains in a long-range sense). Systematic changes occur in the magnetic properties as well. While long-range antiferromagnetic order is preserved, the magnetic transition temperature, T(c), decreases for the same x when Sr substitutes for one Ca. A review of the changes in T(c) for the series Ca(2)Fe(2-x)M(x)O(5), taking into account the tetrahedral/octahedral site preferences for the various M(3+) ions, leads to a partial understanding of the origin of magnetic order in these materials in terms of a layered antiferromagnetic model. While in all cases the preferred magnetic moment direction is (010) at low temperatures, there is a cross over for x = 0.5 to (100) with increasing temperature for both the Ca(2)Fe(2-x)Mn(x)O(5) and the CaSrFe(2-x)Mn(x)O(5) series. For the y > 0 phases, while a brownmillerite ordering of oxygen vacancies is preserved for the Ca(2) phases, a disordered Pm3m cubic perovskite structure is always found when Sr is substituted for one Ca. Long-range magnetic order is also lost, giving way to spin glass or cluster-glass-like behavior below ~50 K. For the x = 0.5 phase, neutron pair distribution function (NPDF) studies show a local structure related to brownmillerite ordering of oxygen vacancies. Neutron diffraction data at 3.8 K show a broad magnetic feature, incommensurate with any multiple of the chemical lattice, and with a correlation length (magnetic domain) of 6.7(4) Å.

4.
Inorg Chem ; 50(16): 7779-91, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21766787

RESUMEN

Sr(2)FeMnO(5+y) was synthesized under two different conditions, in air and in argon, both of which resulted in a cubic, Pm ̅3m, structure with no long-range ordering of oxygen vacancies. The unit cell constants were found to be a(0) = 3.89328(1) Å for argon (y = 0.0) and a(0) = 3.83075(3) Å for air (y = 0.5). In contrast, Ca(2)FeMnO(5) retains long-range brownmillerite oxygen vacancy ordering for either air or argon synthesis. Remarkably, Sr(2)FeMnO(5.0) oxidizes spontaneously in air at room temperature. A neutron pair distribution function (NPDF) study of Sr(2)FeMnO(5.0)(Ar) showed evidence for local, brownmillerite-like ordering of oxygen vacancies for short distances up to 5 Å. Mössbauer spectroscopy results indicate more than one Fe site for Sr(2)FeMnO(5+y)(Ar and air), consistent with the noncubic local structure found by NPDF analysis. The isomer shifts and quadrupole splittings in both air- and argon-synthesized materials are consistent with the 3+ oxidation state for Fe in sites with coordination number four or five. This is confirmed by an L-edge XANES study. Mn is almost entirely in the 3+ state for Sr(2)FeMnO(5.0)(Ar), whereas Mn(4+) is predominantly present for Sr(2)FeMnO(5.5)(air). Magnetic susceptibility data show zero-field-cooled/field-cooled (ZFC/FC) divergences near 50 K for the Ar sample and 25 K for the air sample, whereas Ca(2)FeMnO(5) is long-range G-type antiferromagnetically ordered at 407(2) K. Hyperfine magnetic splitting, observed in temperature-dependent Mössbauer measurements, indicates short-range magnetic correlations that persist up to 150 K for Sr(2)FeMnO(5.0)(Ar) and 100 K for Sr(2)FeMnO(5.5)(air), well above the ZFC/FC divergence temperatures. Neutron diffraction data confirm the absence of long-range magnetic ordering at room temperature and 4 K for Sr(2)FeMnO(5.0)(Ar) but indicate the presence of domains with short-range G-type order at 4 K with an average dimension of ∼50 Å (y = 0); thus, this material is actually a superparamagnet rather than a true spin glass. In sharp contrast, corresponding data for Sr(2)FeMnO(5.5)(air) show mainly a very weak magnetic Bragg peak, indicating that ∼4% of the sample has G-type antiferromagnetic ordering at 4 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...