Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 138: 106608, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37207596

RESUMEN

Here, we rationally designed a human neutrophil elastase (HNE) inhibitors 4a-4f derived from thalidomide. The HNE inhibition assay showed that synthesized compounds 4a, 4b, 4e and 4f demonstrated strong HNE inhibiton properties with IC50 values of 21.78-42.30 nM. Compounds 4a, 4c, 4d and 4f showed a competitive mode of action. The most potent compound 4f shows almost the same HNE inhibition as sivelestat. The molecular docking analysis revealed that the strongest interactions occur between the azetidine-2,4-dione group and the following three aminoacids: Ser195, Arg217 and His57. A high correlation between the binding energies and the experimentally determined IC50 values was also demonstrated. The study of antiproliferative activity against human T47D (breast carcinoma), RPMI 8226 (multiple myeloma), and A549 (non-small-cell lung carcinoma) revealed that designed compounds were more active compared to thalidomide, pomalidomide and lenalidomide used as the standard drugs. Additionally, the most active compound 4f derived from lenalidomide induces cell cycle arrest at the G2/M phase and apoptosis in T47D cells.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Estructura Molecular , Relación Estructura-Actividad , Talidomida/farmacología , Simulación del Acoplamiento Molecular , Lenalidomida/farmacología , Proteínas Inhibidoras de Proteinasas Secretoras/química , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Línea Celular Tumoral
2.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886913

RESUMEN

A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a-3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02-44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59-9.86 µM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.


Asunto(s)
Antineoplásicos , Carcinoma , Proteínas Inhibidoras de Proteinasas Secretoras , Tiazoles , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología
3.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743158

RESUMEN

Many organophosphorus compounds (OPs), especially various α-aminophosphonates, exhibit anti-cancer activities. They act, among others, as inhibitors of the proteases implicated in cancerogenesis. Thesetypes of inhibitors weredescribed, e.g., for neutral endopeptidase (NEP) expressed in different cancer cells, including osteosarcoma (OS). The aim of the present study isto evaluate new borane-protected derivatives of phosphonous acid (compounds 1-7) in terms of their drug-likeness properties, anti-osteosarcoma activities in vitro (against HOS and Saos-2 cells), and use as potential NEP inhibitors. The results revealed that all tested compounds exhibited the physicochemical and ADME properties typical for small-molecule drugs. However, compound 4 did not show capability of blood-brain barrier penetration (Lipinski and Veber rules;SwissAdme tool). Moreover, the α-aminophosphonite-boranes (compounds 4-7) exhibited stronger anti-proliferative activity against OS cells than the other phosphonous acid-borane derivatives (compounds 1-3),especially regarding HOS cells (MTT assay). The most promising compounds 4 and 6 induced apoptosis through the activation of caspase 3 and/or cell cycle arrest at the G2 phase (flow cytometry). Compound 4 inhibited the migration and invasiveness of highly aggressive HOS cells (wound/transwell and BME-coated transwell assays, respectively). Additionally, compound 4 and, to a lesser extent, compound 6 inhibited NEP activity (fluorometric assay). This activity of compound 4 was involved in its anti-proliferative potential (BrdU assay). The present study shows that compound 4 can be considered a potential anti-osteosarcoma agent and a scaffold for the development of new NEP inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Boranos , Osteosarcoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Boranos/farmacología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Neprilisina/farmacología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613577

RESUMEN

Herein, nine phthalimide-based thiazoles (4a-4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) substituents in the phenyl ring exhibited high HNE inhibitory activity with IC50 values of 12.98-16.62 µM. Additionally, compound 4c exhibited mixed mechanism of action. Computational investigation provided a consistent picture of the ligand-receptor pattern of inter-actions, common for the whole considered group of compounds. Moreover, compounds 4b, 4c, 4d and 4f showed high antiproliferative activity against human cancer cells lines MV4-11, and A549 with IC50 values of 8.21 to 25.57 µM. Additionally, compound 4g showed high activity against MDA-MB-231 and UMUC-3 with IC50 values of 9.66 and 19.81 µM, respectively. Spectrophotometric analysis showed that the most active compound 4c demonstrated high stability under physiological conditions.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Relación Estructura-Actividad , Elastasa de Leucocito , Espectrometría de Fluorescencia , Ftalimidas/farmacología , Antineoplásicos/farmacología , Estructura Molecular , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
5.
Bioorg Chem ; 110: 104819, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752144

RESUMEN

Phthalimide derivatives are a promising group of anticancer drugs, while aminothiazoles have great potential as elastase inhibitors. In these context fourteen phthalimido-thiazoles containing a dichloro-substituted phenyl ring with high antiproliferative activity against various cancer cell lines were designed and synthesized. Among the screened derivatives, compounds 5a-5e and 6a-6f showed high activity against human leukemia (MV4-11) cells with IC50 values in the range of 5.56-16.10 µM. The phthalimide-thiazoles 5a, 5b and 5d showed the highest selectivity index (SI) relative to MV4-11 with 11.92, 10.80 and 8.21 values, respectively. The antiproliferative activity of compounds 5e, 5f and 6e, 6f against human lung carcinoma (A549) cells is also very high, with IC50 values in the range of 6.69-10.41 µM. Lead compounds 6e and 6f showed elastase inhibition effect, with IC50 values about 32 µM with mixed mechanism of action. The molecular modeling studies showed that the binding energies calculated for all set of compounds are strongly correlated with the experimentally determined values of IC50. The lead compound 6e also increases almost 16 times caspase 3/7 activity in A549 cells compared to control. We have also demonstrated that compound 6f reduced EGFR tyrosine kinase levels in A549 cells by approximately 31%. These results clearly suggest that 3,4-dichloro-derivative 6e and 3,5-dichloro-derivative 6f could constitute lead dual-targeted anticancer drug candidates.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Ftalimidas/farmacología , Tiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Elastasa Pancreática/antagonistas & inhibidores , Elastasa Pancreática/metabolismo , Ftalimidas/química , Relación Estructura-Actividad , Tiazoles/química , Células Tumorales Cultivadas
7.
Arch Biochem Biophys ; 693: 108566, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32896516

RESUMEN

Interaction of (S)-thalidomide molecule with four nucleobases: adenine, guanine, cytosine and thymine, is investigated in details employing density functional theory methods. Different mutual positions of the molecules are considered, with the starting geometries enabling hydrogen bond interactions between the monomers. Optimization of geometrical parameters is carried out within the B3LYP/6-311G** approximation and followed by evaluation of vibrational frequencies. Binding and interaction energies are calculated employing exchange-correlation functionals including long-range corrections and properly diffuse basis sets. The strongest interaction exists within the (S)-thalidomide-guanine complex. Interestingly, in one of the investigated (S)-thalidomide-guanine complexes two bifurcated hydrogen bonds are observed. The two hydrogens involved in one of them are bonded to a carbon atom in the α position relative to carbonyl group. The present study can be useful in the design of new anticancer and antiviral drugs interacting selectively with DNA or RNA.


Asunto(s)
Nucleósidos/química , Talidomida/química , ADN/química , Enlace de Hidrógeno , ARN/química , Espectrofotometría Infrarroja , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...