Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microb Pathog ; 189: 106596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395317

RESUMEN

Botulism is a severe disease caused by potent botulinum neurotoxins (BoNTs) produced by Clostridium botulinum. This disease is associated with high-lethality outbreaks in cattle, which have been linked to the ingestion of preformed BoNT serotypes C and D, emphasizing the need for effective vaccines. The potency of current commercial toxoids (formaldehyde-inactivated BoNTs) is assured through tests in guinea pigs according to government regulatory guidelines, but their short-term immunity raises concerns. Recombinant vaccines containing the receptor-binding domain have demonstrated potential for eliciting robust protective immunity. Previous studies have demonstrated the safety and effectiveness of recombinant E. coli bacterin, eliciting high titers of neutralizing antibodies against C. botulinum and C. perfringens in target animal species. In this study, neutralizing antibody titers in cattle and the long-term immune response against BoNT/C and D were used to assess the efficacy of the oil-based adjuvant compared with that of the aluminum hydroxide adjuvant in cattle. The vaccine formulation containing Montanide™ ISA 50 yielded significantly higher titers of neutralizing antibody against BoNT/C and D (8.64 IU/mL and 9.6 IU/mL, respectively) and induced an immune response that lasted longer than the response induced by aluminum, extending between 30 and 60 days. This approach represents a straightforward, cost-effective strategy for recombinant E. coli bacterin, enhancing both the magnitude and duration of the immune response to botulism.


Asunto(s)
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Bovinos , Animales , Cobayas , Botulismo/prevención & control , Botulismo/veterinaria , Hidróxido de Aluminio , Escherichia coli/genética , Vacunas Bacterianas/genética , Toxinas Botulínicas/genética , Clostridium botulinum/genética , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antibacterianos
2.
Biotechnol Lett ; 42(11): 2223-2230, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32500473

RESUMEN

OBJECTIVES: Earlier studies have demonstrated the use of inactivated recombinant E. coli (bacterins), to protect against Clostridium spp. in vaccinated animals. These bacterins have a simpler, safer, and faster production process. However, these bacterins carry expression plasmids, containing antibiotic resistance gene, which could be assimilate accidentally by environmental microorganisms. Considering this, we aimed to impair this plasmids using formaldehyde at different concentrations. RESULTS: This compound inactivated the highest density of cells in 24 h. KanR cassette amplification was found to be impaired with 0.8% for 24 h or 0.4% for 72 h. Upon electroporation, E. coli DH5α ultracompetent cells were unable to acquire the plasmids extracted from the bacterins after inactivation procedure. Formaldehyde-treated bacterins were incubated with other viable strains of E. coli, leading to no detectable gene transfer. CONCLUSIONS: We found that this compound is effective as an inactivation agent. Here we demonstrate the biosafety involving antibiotic resistance gene of recombinant E. coli vaccines allowing to industrial production and animal application.


Asunto(s)
Escherichia coli/genética , Formaldehído/farmacología , Resistencia a la Kanamicina/efectos de los fármacos , Plásmidos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Vacunas contra Escherichia coli/efectos adversos , Vacunas contra Escherichia coli/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Plásmidos/genética , Vacunas de Productos Inactivados , Vacunas Sintéticas
3.
Anaerobe ; 63: 102201, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32247696

RESUMEN

Botulism is a neuroparalytic intoxication, usually fatal, caused by the botulinum toxins (BoNTs). Vaccination is the best-known strategy to prevent this disease in ruminants. Serotypes C and D and their variants CD and DC are the main types responsible for botulism in bovine and buffaloes in Brazil and cattle in Japan and Europe. Brazil has a herd of approximately 1.39 million buffaloes and is the largest producer in the Western world. This study aimed to assess the humoral immune response of buffaloes during the 12-month period after vaccination against BoNT serotypes C and D with a recombinant vaccine in three different concentrations (100, 200, and 400 µg) of non-purified recombinant proteins (Vrec) and also with a bivalent commercial toxoid (Vcom). Vrec400 was the best vaccine among those tested because it induced higher levels of antibodies and maintained higher levels of antibodies for the longest time, while Vrec200 could be considered the most cost-effective vaccine for large-scale production. None of the vaccines were able to promote continuous immunological protection within the timeframe proposed by the current Brazilian vaccination protocol. Further studies should focus on vaccine adjustments to ensure continued humoral protection against botulism.


Asunto(s)
Botulismo/terapia , Búfalos/microbiología , Inmunidad Humoral , Vacunación/veterinaria , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Antibacterianos , Anticuerpos Neutralizantes , Vacunas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Botulismo/inmunología , Botulismo/veterinaria , Búfalos/inmunología , Bovinos , Clostridium/inmunología , Proteínas Recombinantes/inmunología
4.
Anaerobe ; 59: 163-166, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31299397

RESUMEN

Clostridium perfringens type A is the causative agent of gas gangrene and gastroenteric ("yellow lamb disease") disease in ruminants, with C. perfringens alpha toxin (CPA) being the main virulence factor in the pathogenesis of these illnesses. In the present study, we have developed recombinant Escherichia coli bacteria expressing rCPA and used it to vaccinate rabbits and sheep. Doses of up to 200 µg of rCPA used for inoculation, induced 13.82 IU.mL-1 of neutralizing antitoxin in rabbits, which is three times higher than that recommended by the USDA (4 IU.mL-1). In sheep, recombinant bacteria induced antitoxin titers of 4 IU.mL-1, 56 days after the first dose. rCPA which was expressed, mainly, in inclusion bodies, was not found to influence the immunogenicity of the vaccine. The recombinant Escherichia coli bacterin, produced simply and safely, is capable of affording protection against diseases caused by C. perfringens CPA. The current findings represent a novel production method for CPA vaccines potentially applicable to veterinary medicine.


Asunto(s)
Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Proteínas de Unión al Calcio/inmunología , Infecciones por Clostridium/veterinaria , Portadores de Fármacos , Escherichia coli/genética , Fosfolipasas de Tipo C/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antitoxinas/sangre , Toxinas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Proteínas de Unión al Calcio/genética , Infecciones por Clostridium/prevención & control , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Ovinos , Fosfolipasas de Tipo C/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
6.
Toxins (Basel) ; 10(10)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241350

RESUMEN

Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 µg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.


Asunto(s)
Vacunas Bacterianas/farmacología , Toxinas Botulínicas/inmunología , Botulismo/prevención & control , Enfermedades de los Bovinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Bovinos , Inmunidad Humoral/efectos de los fármacos , Vacunas Sintéticas/farmacología
9.
Toxins (Basel) ; 9(10)2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937601

RESUMEN

Botulism is a fatal intoxication caused by botulinum neurotoxins (BoNTs), which are mainly produced by Clostridium botulinum and characterized by flaccid paralysis. The BoNTs C and D are the main serotypes responsible for botulism in animals, including buffaloes. Botulism is one of the leading causes of death in adult ruminants in Brazil due to the high mortality rates, even though botulism in buffaloes is poorly reported and does not reflect the real economic impact of this disease in Brazilian herds. Vaccination is reported as the most important prophylactic measure for botulism control, although there are no specific vaccines commercially available for buffaloes in Brazil. This study aimed to evaluate the humoral immune response of buffalo groups vaccinated with three different concentrations of recombinant proteins (100, 200, and 400 µg) against BoNTs serotypes C and D as well as to compare the groups to each other and with a group vaccinated with a bivalent commercial toxoid. The recombinant vaccine with a concentration of 400 µg of proteins induced the highest titers among the tested vaccines and was proven to be the best choice among the formulations evaluated and should be considered as a potential vaccine against botulism in buffalo.


Asunto(s)
Vacunas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Botulismo/veterinaria , Búfalos/inmunología , Inmunidad Humoral , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Botulismo/prevención & control , Búfalos/microbiología , Femenino , Masculino , Proteínas Recombinantes/inmunología , Serogrupo , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...