Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): eabo7201, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943932

RESUMEN

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasa de Coronavirus , Descubrimiento de Drogas , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasa de Coronavirus/síntesis química , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Relación Estructura-Actividad , Cristalografía por Rayos X
2.
Nat Commun ; 14(1): 2124, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059708

RESUMEN

The SARS-CoV-2 main protease (3CLpro) is one of the promising therapeutic targets for the treatment of COVID-19. Nirmatrelvir is the first 3CLpro inhibitor authorized for treatment of COVID-19 patients at high risk of hospitalization. We recently reported on the in vitro selection of SARS-CoV-2 3CLpro resistant virus (L50F-E166A-L167F; 3CLprores) that is cross-resistant with nirmatrelvir and other 3CLpro inhibitors. Here, we demonstrate that the 3CLprores virus replicates efficiently in the lungs of intranasally infected female Syrian hamsters and causes lung pathology comparable to that caused by the WT virus. Moreover, hamsters infected with 3CLprores virus transmit the virus efficiently to co-housed non-infected contact hamsters. Importantly, at a dose of 200 mg/kg (BID) of nirmatrelvir, the compound was still able to reduce the lung infectious virus titers of 3CLprores-infected hamsters by 1.4 log10 with a modest improvement in the lung histopathology as compared to the vehicle control. Fortunately, resistance to Nirmatrelvir does not readily develop in clinical setting. Yet, as we demonstrate, in case drug-resistant viruses emerge, they may spread easily which may thus impact therapeutic options. Therefore, the use of 3CLpro inhibitors in combination with other drugs may be considered, especially in immunodeficient patients, to avoid the development of drug-resistant viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Femenino , Mesocricetus , COVID-19/patología , Pulmón/patología , Antivirales/farmacología , Antivirales/uso terapéutico
3.
mBio ; 14(1): e0281522, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625640

RESUMEN

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Inhibidores Enzimáticos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/genética
4.
Antiviral Res ; 192: 105122, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186107

RESUMEN

There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air-liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35 °C than 37 °C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN (ß1 and λ1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clinical testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclinical and clinical development.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/virología , Humanos , ARN Viral , SARS-CoV-2/aislamiento & purificación , Células Vero
5.
Artículo en Inglés | MEDLINE | ID: mdl-32340991

RESUMEN

Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Antivirales/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/genética , Chlorocebus aethiops , Células Vero , Proteínas no Estructurales Virales , Replicación Viral
6.
Antimicrob Agents Chemother ; 60(8): 5064-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246775

RESUMEN

Tryptophan dendrimers that inhibit HIV replication by binding to the HIV envelope glycoproteins gp120 and gp41 have unexpectedly also proven to be potent, specific, and selective inhibitors of the replication of the unrelated enterovirus A71. Dendrimer 12, a consensus compound that was synthesized on the basis of the structure-activity relationship analysis of this series, is 3-fold more potent against the BrCr lab strain and, surprisingly, inhibits a large panel of clinical isolates in the low-nanomolar/high-picomolar range.


Asunto(s)
Fármacos Anti-VIH/farmacología , Enterovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...