Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 2): 135212, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216582

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to pose a significant global health threat. Identifying new druggable targets is crucial for the advancement of drug development. Equally critical is the development of precise methods for monitoring Mtb to effectively combat this disease. Addressing these needs, our study pinpointed the pore domain (PD) of MtbMmpL3 as a new binding site for virtual screening, which led to the discovery of the small molecule ZY27. To confirm the binding site and action mode of ZY27, we employed cosolvent molecular dynamics (CMD), steered molecular dynamics (SMD), and long timescale molecular dynamics (MD) simulations of 5 µs. These in silico studies verified that ZY27 binds to the PD of MtbMmpL3. In antimicrobial activity tests, ZY27 exhibited potent anti-Mtb activity and high selectivity among mycobacterial species. Whole-genome sequencing of spontaneous ZY27-resistant Mtb variants, complemented by acid-fast staining experiments, confirmed that ZY27 specifically targets MtbMmpL3. Utilizing the ligand-protein binding data, we designed and synthesized two solvatochromic fluorescent probes, 27FP1 and 27FP2, based on ZY27. Further investigations through flow cytometry and confocal microscopy confirmed that these probes specifically label Mtb cells via the MtbMmpL3 binding mechanism.

2.
Biofouling ; 39(1): 24-35, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644897

RESUMEN

Mycobacterium abscessus (M. abscessus) can exist either as planktonic bacteria or as a biofilm. Biofilm formation is one of the important causes of conversion to resistance to antibiotics of bacteria that were previously sensitive when in their planktonic form, resulting in infections difficult to manage. Panax quinquefolius and its active ingredient ginsenosides have the potential ability in fighting pathogenic infections. In this study, the P. quinquefolius extract (PQE) showed good antibacterial/bactericidal activity against the M. abscessus planktonic cells. The extract reduced the biomass, thickness, and number of M. abscessus in the biofilm and altered its morphological characteristics as well as the spatial distribution of dead/alive bacteria. Moreover, the ginsenoside CK monomer had a similar inhibitory effect on M. abscessus planktonic bacteria and biofilm formation. Therefore, PQE and its monomer CK might be potential novel antimicrobial agents for the clinical prevention and treatment of M. abscessus, including biofilms in chronic infections.


Asunto(s)
Mycobacterium abscessus , Panax , Biopelículas , Antibacterianos/farmacología , Bacterias , Plancton , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana
3.
J Med Chem ; 65(16): 11058-11065, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35926511

RESUMEN

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb) and is ranked as the second killer infectious disease after COVID-19. Proteasome accessory factor A (PafA) is considered an attractive target because of its low sequence conservation in humans and its role in virulence. In this study, we designed a mutant of Mtb PafA that enabled large-scale purification of active PafA. Using a devised high-throughput screening assay, two PafA inhibitors were discovered. ST1926 inhibited Mtb PafA by binding in the Pup binding groove, but it was less active against Corynebacterium glutamicum PafA because the ST1926-binding residues are not conserved. Bithionol bound to the conserved ATP-binding pocket, thereby, inhibits PafA in an ATP-competitive manner. Both ST1926 and bithionol inhibited the growth of an attenuated Mtb strain (H37Ra) at micromolar concentrations. Our work thus provides new tools for tuberculosis research and a foundation for future PafA-targeted drug development for treating tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Inhibidores de Proteasoma , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Bitionol/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología
4.
Front Microbiol ; 13: 924410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711765

RESUMEN

Tuberculosis (TB) is a life-threatening infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). Timely diagnosis and effective treatment are essential in the control of TB. Conventional smear microscopy still has low sensitivity and is unable to reveal the drug resistance of this bacterium. The traditional culture-based diagnosis is time-consuming, since usually the results are available after 3-4 weeks. Molecular biology methods fail to differentiate live from dead M. tuberculosis, while diagnostic immunology methods fail to distinguish active from latent TB. In view of these limitations of the existing detection techniques, in addition to the continuous emergence of multidrug-resistant and extensively drug-resistant TB, in recent years there has been an increase in the demand for simple, rapid, accurate and economical point-of-care approaches. This review describes the development, evaluation, and implementation of conventional diagnostic methods for TB and the rapid new approaches for the detection of M. tuberculosis.

5.
Front Microbiol ; 13: 1056608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620019

RESUMEN

Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA