Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Adv ; 9(45): eadi9442, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939175

RESUMEN

Photoelectrochemical (PEC) organic transformations occurring at anodes are a promising strategy for circumventing the sluggish kinetics of the oxygen evolution reaction. Here, we report a free radical-mediated reaction instead of direct hole transfer occurring at the solid/liquid interface for PEC oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) with high selectivity. A bismuth vanadate (BiVO4) photoanode coated with a 2,2'-bipyridine-based covalent organic framework bearing single Ni sites (Ni-TpBpy) was developed to drive the transformation. Experimental studies reveal that the reaction at the Ni-TpBpy/BiVO4 photoanode followed first-order reaction kinetics, boosting the formation of surface-bound ·OH radicals, which suppressed further BAD oxidation and provided a nearly 100% selectivity and a rate of 80.63 µmol hour-1 for the BA-to-BAD conversion. Because alcohol-to-aldehyde conversions are involved in the valorizations of biomass and plastics, this work is expected to open distinct avenues for producing key intermediates of great value.

2.
Front Immunol ; 14: 1190844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475855

RESUMEN

Background: The immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial in maintaining a delicate balance between protective effects and harmful pathological reactions that drive the progression of coronavirus disease 2019 (COVID-19). T cells play a significant role in adaptive antiviral immune responses, making it valuable to investigate the heterogeneity and diversity of SARS-CoV-2-specific T cell responses in COVID-19 patients with varying disease severity. Methods: In this study, we employed high-throughput T cell receptor (TCR) ß repertoire sequencing to analyze TCR profiles in the peripheral blood of 192 patients with COVID-19, including those with moderate, severe, or critical symptoms, and compared them with 81 healthy controls. We specifically focused on SARS-CoV-2-associated TCR clonotypes. Results: We observed a decrease in the diversity of TCR clonotypes in COVID-19 patients compared to healthy controls. However, the overall abundance of dominant clones increased with disease severity. Additionally, we identified significant differences in the genomic rearrangement of variable (V), joining (J), and VJ pairings between the patient groups. Furthermore, the SARS-CoV-2-associated TCRs we identified enabled accurate differentiation between COVID-19 patients and healthy controls (AUC > 0.98) and distinguished those with moderate symptoms from those with more severe forms of the disease (AUC > 0.8). These findings suggest that TCR repertoires can serve as informative biomarkers for monitoring COVID-19 progression. Conclusions: Our study provides valuable insights into TCR repertoire signatures that can be utilized to assess host immunity to COVID-19. These findings have important implications for the use of TCR ß repertoires in monitoring disease development and indicating disease severity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Gravedad del Paciente
3.
Adv Mater ; 35(15): e2209955, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36692193

RESUMEN

The photo-electrochemical (PEC) oxidation of glycerol (GLY) to high-value-added dihydroxyacetone (DHA) can be achieved over a BiVO4 photoanode, while the PEC performance of most BiVO4 photoanodes is impeded due to the upper limits of the photocurrent density. Here, an enhanced Mie scattering effect of the well-documented porous BiVO4 photoanode is obtained with less effort by a simple annealing process, which significantly reduces the reflectivity to near zero. The great light absorbability increases the basic photocurrent density by 1.77 times. The selective oxidation of GLY over the BiVO4 photoanode results in a photocurrent density of 6.04 mA cm-2 and a DHA production rate of 325.2 mmol m-2 h-1 that exceeds all reported values. This work addresses the poor ability of nanostructured BiVO4 to harvest light, paving the way for further improvements in charge transport and transfer to realize highly efficient PEC conversion.

4.
Angew Chem Int Ed Engl ; 62(1): e202210804, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36351869

RESUMEN

Water oxidation reaction leaves room to be improved in the development of various solar fuel productions, because of the kinetically sluggish 4-electron transfer process of oxygen evolution reaction. In this work, we realize reactive oxygen species (ROS), H2 O2 and OH⋅, formations by water oxidation with total Faraday efficiencies of more than 90 % by using inter-facet edge (IFE) rich WO3 arrays in an electrolyte containing CO3 2- . Our results demonstrate that the IFE favors the adsorption of CO3 2- while reducing the adsorption energy of OH⋅, as well as suppresses surface hole accumulation by direct 1-electron and indirect 2-electron transfer pathways. Finally, we present selective oxidation of benzyl alcohol by in situ using the formed OH⋅, which delivers a benzaldehyde production rate of ≈768 µmol h-1 with near 100 % selectivity. This work offers a promising approach to tune or control the oxidation reaction in an aqueous solar fuel system towards high efficiency and value-added product.

5.
J Adv Res ; 46: 101-112, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35750287

RESUMEN

INTRODUCTION: Acute myocardial infarction (AMI) accounts for the majority of deaths caused by coronary artery disease (CAD). Early warning of AMI, especially for patients with stable coronary artery disease (sCAD), is urgently needed. Our previous study showed that alterations in the gut microbiota were correlated with CAD severity. OBJECTIVES: Herein, we tried to discover accurate and convenient biomarkers for AMI by combination of gut microbiota and fecal/blood/urinary metabolomics. METHODS: We recruited 190 volunteers including 93 sCAD patients, 49 AMI patients, and 48 subjects with normal coronary artery (NCA), and measured their blood biochemical parameters, 16S rRNA-based gut microbiota and NMR-based fecal/blood/urinary metabolites. We further selected 20 subjects from each group and analyzed their gut microbiota by whole-metagenome shotgun sequencing. RESULTS: Multi-omic analyses revealed that AMI patients exhibited specific changes in gut microbiota and serum/urinary/fecal metabolites as compared to subjects with sCAD or NCA. Fourteen bacterial genera and 30 metabolites (11 in feces, 10 in blood, 9 in urine) were closely related to AMI phenotypes and could accurately distinguish AMI patients from sCAD patients. Some species belonging to Alistipes, Streptococcus, Ruminococcus, Lactobacillus and Faecalibacterium were effective to distinguish AMI from sCAD and their predictive ability was confirmed in an independent cohort of CAD patients. We further selected nine indicators including 4 bacterial genera, 3 fecal and 2 urinary metabolites as a noninvasive biomarker set which can distinguish AMI from sCAD with an AUC of 0.932. CONCLUSION: Combination of gut microbiota and fecal/urinary metabolites provided a set of potential useful and noninvasive predictive biomarker for AMI from sCAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Microbioma Gastrointestinal , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/microbiología , ARN Ribosómico 16S/genética , Biomarcadores
6.
PLoS One ; 17(9): e0270816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36156080

RESUMEN

PURPOSE: Interventions that can help streamline and reduce gaps in the tuberculosis (TB) care cascade can play crucial roles in TB prevention and care, but are often operationally complex and resource intensive, given the heterogenous settings in which they are implemented. In this study, we present a comparative analysis on cost-effectiveness of TB REACH Wave 5 projects with diverse programmatic objectives to inform future decisions regarding funding, strategic adoption, and scale-up. METHODS: We comprehensively reviewed project reports and financial statements from TB REACH Wave 5, a funding mechanism for interventions that aimed to strengthen the TB care cascade in diverse settings. Two independent reviewers abstracted cost (in 2017 US dollars) and key programmatic data, including project type (case-finding only; case-finding and linkage-to-care; or case-finding, linkage-to-care and patient support), operational setting (urban or rural), and project outputs (numbers of people with TB diagnosed, started on treatment, and successfully completing treatment). Cost-effectiveness ratios for each project were calculated as ratios of apportioned programmatic expenditures to corresponding project outputs. RESULTS: Of 32 case finding and patient support projects funded through TB REACH Wave 5, 29 were included for analysis (11 case-finding only; 9 case-finding and linkage-to-care; and 9 case-finding, linkage-to-care and patient support). 21 projects (72%) were implemented in either Africa or Southeast Asia, and 19 (66%) focused on serving urban areas. Average cost-effectiveness was $184 per case diagnosed (range: $30-$10,497), $332 per diagnosis and treatment initiation ($123-$10,608), and $40 per patient treatment supported ($8-$160). Cost per case diagnosed was lower for case-finding-only projects ($132) than projects including linkage-to-care ($342) or linkage-to-care and patient support ($254), and generally increased with the corresponding country's per-capita GDP ($543 per $1000 increase, 95% confidence interval: -$53, $1138). CONCLUSION: The costs and cost-effectiveness of interventions to strengthen the TB care cascade were heterogenous, reflecting differences in context and programmatic objective. Nevertheless, many such interventions are likely to offer good value for money. Systematic collection and analysis of cost-effectiveness data can help improve comparability, monitoring, and evaluation.


Asunto(s)
Tuberculosis , África , Análisis Costo-Beneficio , Humanos , Población Rural , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
7.
Nat Commun ; 13(1): 4982, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008378

RESUMEN

Millions of families around the world remain vulnerable to water scarcity and have no access to drinking water. Advanced oxidation processes (AOPs) are an effective way towards water purification with qualified reactive oxygen species (ROSs) while are impeded by the high-cost and tedious process in either input of consumable reagent, production of ROSs, and the pre-treatment of supporting electrolyte. Herein, we couple solar light-assisted H2O2 production from water and photo-Fenton-like reactions into a self-cyclable system by using an artificial leaf, achieving an unassisted H2O2 production rate of 0.77 µmol/(min·cm2) under 1 Sun AM 1.5 illumination. Furthermore, a large (70 cm2) artificial leaf was used for an unassisted solar-driven bicarbonate-activated hydrogen peroxide (BAP) system with recycled catalysts for real-time wastewater purification with requirements for only water, oxygen and sunlight. This demonstration highlights the feasibility and scalability of photoelectrochemical technology for decentralized environmental governance applications from laboratory benchtops to industry.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Conservación de los Recursos Naturales , Política Ambiental , Humanos , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Luz Solar , Aguas Residuales , Agua
8.
Front Microbiol ; 13: 735363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464969

RESUMEN

Objective: We aimed to evaluate the performance of nanopore amplicon sequencing detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples. Method: We carried out a single-center, prospective cohort study in a Wuhan hospital and collected a total of 86 clinical samples, including 54 pharyngeal swabs, 31 sputum samples, and 1 fecal sample, from 86 patients with coronavirus disease 2019 (COVID-19) from Feb 20 to May 15, 2020. We performed parallel detection with nanopore-based genome amplification and sequencing (NAS) on the Oxford Nanopore Technologies (ONT) minION platform and routine reverse transcription quantitative polymerase chain reaction (RT-qPCR). In addition, 27 negative control samples were detected using the two methods. The sensitivity and specificity of NAS were evaluated and compared with those of RT-qPCR. Results: The viral read number and reference genome coverage were both significantly different between the two groups of samples, and the latter was a better indicator for SARS-CoV-2 detection. Based on the reference genome coverage, NAS revealed both high sensitivity (96.5%) and specificity (100%) compared with RT-qPCR (80.2 and 96.3%, respectively), although the samples had been stored for half a year before the detection. The total time cost was less than 15 h, which was acceptable compared with that of RT-qPCR (∼2.5 h). In addition, the reference genome coverage of the viral reads was in line with the cycle threshold value of RT-qPCR, indicating that this number could also be used as an indicator of the viral load in a sample. The viral load in sputum might be related to the severity of the infection, particularly in patients within 4 weeks after onset of clinical manifestations, which could be used to evaluate the infection. Conclusion: Our results showed the high sensitivity and specificity of the NAS method for SARS-CoV-2 detection compared with RT-qPCR. The sequencing results were also used as an indicator of the viral load to display the viral dynamics during infection. This study proved the wide application prospect of nanopore sequencing detection for SARS-CoV-2 and may more knowledge about the clinical characteristics of COVID-19.

9.
Biomed Pharmacother ; 139: 111595, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33862492

RESUMEN

BACKGROUND: Akkermansia spp. plays important roles in maintenance of host health. Increasing evidence reveals that berberine (BBR) may exert its pharmacological effects via, at least partially, promotion of Akkermansia spp. However, how BBR stimulates Akkermansia remains largely unknown. PURPOSE: In this study, we investigated the mechanism underlying the Akkermansia-promoting effect of BBR. MATERIALS AND METHODS: The effect of BBR on Akkermansia was assessed in BBR-gavaged mice and direct incubation. The influence of BBR on intestinal mucin production was determined by alcian-blue staining and real-time PCR. The feces were analysis by gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS) metabolomics. The role of polyamines in BBR-elicited mucin secretion and Akkermansia growth was evaluated by administration of difluoromethylornithine (DFMO) in mice. RESULTS: Gavage of BBR dose-dependently and time-dependently increased the abundance of Akkermansia in mice. However, it did not stimulate Akkermansia growth in direct incubation, suggesting that BBR may promote Akkermansia in a host-dependent way. Oral administration of BBR significantly increased the transcription of mucin-producing genes and mucin secretion in colon. Untargeted metabolomics analysis showed that BBR increased polyamines production in feces which are known to stimulate goblet cell proliferation and differentiation, but treatment with eukaryotic polyamine synthase inhibitor DFMO did not abolish the stimulating effect of BBR on mucin secretion and Akkermansia growth, indicating that the gut bacteria-derived but not the host-derived polyamines may involve in the BBR-promoted Akkermansia growth. CONCLUSIONS: Our results reveal that BBR is a promising prebiotic for Akkermansia, and it promotes Akkermansia growth via stimulating mucin secretion in colon.


Asunto(s)
Akkermansia/efectos de los fármacos , Berberina/farmacología , Colon/efectos de los fármacos , Mucinas/metabolismo , Prebióticos , Akkermansia/crecimiento & desarrollo , Animales , Colon/metabolismo , Dieta Alta en Grasa , Heces/química , Heces/microbiología , Microbioma Gastrointestinal/genética , Proteína Jagged-1/genética , Masculino , Metabolómica , Ratones Endogámicos ICR , Poliaminas/metabolismo , ARN Ribosómico 16S , Receptor Notch1/genética , Factor de Transcripción HES-1/genética
10.
Small ; 17(13): e2100400, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33690971

RESUMEN

BiVO4 theoretically has a thermodynamic activity trend toward highly selective water oxidative H2 O2 formation, but it is more inclined to generate O2 in practical. The influence of intrinsic oxygen vacancy (Ovac ), especially, on surface reactivity, has never been considered as a possible activity loss mechanism in the synthetic BiVO4 . In this work, it is theoretically and experimentally demonstrated that the intrinsic surface Ovac is responsible for lower H2 O2 evolution activity via promoting water dissociation to form intermediate. Through an annealing process under a V2 O5 rich atmosphere, the surface Ovac can be eliminated that awakens the photoelectrochemical (PEC) water oxidative H2 O2 activity in a NaHCO3 electrolyte, which achieves an average of 58.4%, and increases by up to 4.28 times of the one annealed in air. This work offers a general understanding of catalytic activity loss and may be extended to other photo or electrocatalysts for catalytic selectivity regulation.

11.
Front Cell Dev Biol ; 9: 781267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071229

RESUMEN

Background: The symptoms of coronavirus disease 2019 (COVID-19) range from moderate to critical conditions, leading to death in some patients, and the early warning indicators of the COVID-19 progression and the occurrence of its serious complications such as myocardial injury are limited. Methods: We carried out a multi-center, prospective cohort study in three hospitals in Wuhan. Genome-wide 5-hydroxymethylcytosine (5hmC) profiles in plasma cell-free DNA (cfDNA) was used to identify risk factors for COVID-19 pneumonia and develop a machine learning model using samples from 53 healthy volunteers, 66 patients with moderate COVID-19, 99 patients with severe COVID-19, and 38 patients with critical COVID-19. Results: Our warning model demonstrated that an area under the curve (AUC) for 5hmC warning moderate patients developed into severe status was 0.81 (95% CI 0.77-0.85) and for severe patients developed into critical status was 0.92 (95% CI 0.89-0.96). We further built a warning model on patients with and without myocardial injury with the AUC of 0.89 (95% CI 0.84-0.95). Conclusion: This is the first study showing the utility of 5hmC as an accurate early warning marker for disease progression and myocardial injury in patients with COVID-19. Our results show that phosphodiesterase 4D and ten-eleven translocation 2 may be important markers in the progression of COVID-19 disease.

12.
Clin Epigenetics ; 12(1): 17, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964422

RESUMEN

BACKGROUND: The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis. Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied. RESULTS: To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin. CONCLUSIONS: Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for minimally noninvasive diagnosis and prediction of CAD.


Asunto(s)
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células/química , Enfermedad de la Arteria Coronaria/diagnóstico , 5-Metilcitosina/análisis , Adulto , Anciano , Biomarcadores/análisis , Ácidos Nucleicos Libres de Células/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , ADN/sangre , ADN/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/genética
13.
Chem Biol Interact ; 275: 74-85, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28757135

RESUMEN

New effective treatment for human non-small cell lung cancer (NSCLC) is needed. The thioredoxin (Trx) system composes of thioredoxin reductase (TrxR), Trx and NADPH. In this study, we combined an organic selenium compound--TrxR inhibitor ethaselen (BBSKE) with low dosage sodium selenite to inhibit proliferation and induce death of NSCLC cells, and identified underlying mechanisms. Synergistic anti-proliferation effect of BBSKE and selenite was found in human NSCLC cell lines, A549, NCI-H1299 and NCI-1266. A significant increase of apoptosis, necrosis and autophagy were observed in the group of BBSKE plus selenite in A549 cells. The autophagy induced by BBSKE and selenite inhibited apoptosis and necrosis. In addition, BBSKE plus selenite induced G2/M arrest, which was verified by the alteration of gene and protein expression of cell cycle regulatory complexes. The intracellular enzyme activity of TrxR was remarkably decreased by cotreatment of BBSKE and selenite. Besides, the mRNA and protein level of TrxR1 and Trx1 were significantly inhibited by cotreatment of BBSKE and selenite. HEK 293 cells overexpressing TrxR1 were more sensitive to BBSKE plus selenite. The nuclear translocation of Trx1 and Ref-1, as well as expression of Ref-1 and AP-1 were inhibited by combination treatment. In short, BBSKE synergizes selenite in inhibiting proliferation and inducing death of NSCLC cells; BBSKE combined with selenite may be a treatment strategy for NSCLC.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos de Organoselenio/farmacología , Selenito de Sodio/farmacología , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Compuestos de Organoselenio/química , Proteínas de Unión al ARN/metabolismo , Selenito de Sodio/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
14.
Sci Rep ; 6: 36860, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845427

RESUMEN

Thioredoxin reductase 1 (TrxR1) is a pivotal intracellular redox sensor and antioxidant enzyme. On the other hand, overexpression of TrxR1 is closely correlated with the initiation of various tumors including breast cancer, though the detailed mechanism remains unclear. Here we investigated the role of TrxR1 in dysplastic transformation of human breast epithelial cell line MCF-10A induced by chronic oxidative stress. Not surprisingly, sustained exposure to H2O2 significantly augmented the expression and activity of TrxR1 in MCF-10A cells. The dysplastically transformed MCF-10A (MCF-10AT) cells undergoing 8-week H2O2 treatment exhibited a certain degree of malignancy in tumorigenicity evaluation. Moreover, TrxR1 inhibitor ethaselen (BBSKE) could partially reverse some malignant phenotypes including epithelial to mesenchymal transition (EMT) of MCF-10AT as well as MCF-7 cells. Collectively, our results supported the considerable involvement of TrxR1 in the onset of breast cancer and BBSKE may be a promising agent against breast cancer.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tiorredoxina Reductasa 1/metabolismo , Adulto , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cadherinas/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Enfermedad Fibroquística de la Mama/patología , Humanos , Queratina-7/metabolismo , Células MCF-7 , Ratones , Ratones Desnudos , Microscopía Confocal , Persona de Mediana Edad , Modelos Biológicos , Compuestos de Organoselenio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/sangre , Trasplante Heterólogo
15.
Int J Clin Exp Pathol ; 7(1): 322-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427353

RESUMEN

Hypoxia inducible factor-1α (HIF-1α) is upregulated by hypoxia, and involved in tumor growth and metastasis in many malignant tumors including papillary thyroid carcinoma (PTC). Metallothionein (MT) is a group of small molecular weight cysteine-rich proteins with a broad variety of functions. SLUG is a member of SNAIL superfamily of zinc finger transcriptional factors implicated in epithelial-mesenchymal transition (EMT). The purpose of this study was to examine HIF-1α, MT and SLUG expression in PTC and assess association of their expression with clinicopathological indicators. HIF-1α, MT and SLUG protein expression in 129 PTCs, 61 nodular hyperplasia and 118 normal thyroid tissue specimens were analyzed using immunohistochemistry. The protein expression levels of these three molecules were up-regulated in PTCs. High protein expression of HIF-1α, MT and SLUG was significantly correlated with high TNM stage (P=0.003, 0.002, 0.024, respectively) and lymph node metastasis (LNM) (P<0.001 for all three molecules). Furthermore, HIF-1α, MT and SLUG protein expression were correlated with one another. Concomitant high expression of any two of these three molecules had stronger correlation with high TNM stage (P≤0.001 for HIF-1α/MT, MT/SLUG and HIF-1α/SLUG) and LNM (P=0.008, 0.002, 0.019 for HIF-1α/MT, MT/SLUG and HIF-1α/SLUG, respectively) than did each alone, and concomitant high expression of all these three molecules is significantly associated with high TNM stage and LNM as compared with cases not showing such expression (P<0.001). These results demonstrated that the evaluation of HIF-1α, MT and SLUG expression in PTC may be useful in predicting the risk of LNM and high TNM stage.


Asunto(s)
Carcinoma/metabolismo , Carcinoma/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Metalotioneína/biosíntesis , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Factores de Transcripción/biosíntesis , Biomarcadores de Tumor/análisis , Carcinoma Papilar , Femenino , Humanos , Inmunohistoquímica , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Factores de Transcripción de la Familia Snail , Cáncer Papilar Tiroideo , Análisis de Matrices Tisulares , Regulación hacia Arriba
16.
Clin Dev Immunol ; 2013: 589423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24288553

RESUMEN

This study aimed to examine HIF-2α, TWIST, and CXCR4 expression in papillary thyroid carcinoma (PTC) and assesses the association of their expression with clinicopathological indicators. HIF-2α, TWIST, and CXCR4 protein expression in 129 PTCs, 61 nodular hyperplasia, and 118 normal thyroid tissue specimens was analyzed using immunohistochemistry. The protein expression levels of these three molecules were upregulated in PTCs. High protein expression of HIF-2α, TWIST, and CXCR4 was significantly correlated with lymph node metastasis (LNM) (P < 0.001). Furthermore, HIF-2α, TWIST, and CXCR4 protein expression was correlated with one another. Concomitant high expression of these molecules had stronger correlation with LNM than did each alone (P = 0.032 for HIF-2α/TWIST, P < 0.001 for HIF-2α/CXCR4, P = 0.018 for TWIST/CXCR4, and P < 0.001 for HIF-2α/TWIST/CXCR4). Additionally, HIF-2α, TWIST, and CXCR4 mRNA expression were assessed in 30 PTCs, 10 nodular hyperplasia, and 10 normal thyroid tissue specimens using real-time RT-PCR. TWIST and CXCR4 mRNA expression levels were up-regulated in PTCs, and high mRNA expression of TWIST and CXCR4 was significantly correlated with LNM (P = 0.005 and P = 0.010, resp.). These results demonstrated that the evaluation of HIF-2α, TWIST, and CXCR4 expression in PTC may be useful in predicting the risk of LNM.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma/genética , Carcinoma/patología , Expresión Génica , Receptores CXCR4/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Proteína 1 Relacionada con Twist/genética , Adulto , Anciano , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Carcinoma Papilar , Femenino , Humanos , Inmunohistoquímica , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/metabolismo , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/metabolismo , Proteína 1 Relacionada con Twist/metabolismo
17.
J Steroid Biochem Mol Biol ; 138: 314-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23907016

RESUMEN

G protein-coupled estrogen receptor 1 (GPER1) is widely expressed in human breast cancers correlating with increased tumor size and malignancy. Although estrogen signaling via GPER1 was extensively studied in recent years, the underlying molecular mechanism of GPER1-associated metastasis of breast cancer still remains unclear. In this study, the main aims were focused on the potential role of GPER1 in regulating migration and invasion of nuclear estrogen receptor (ER)-negative breast cancer cells upon 17ß-estradiol (E2) stimulation and the involved signaling pathway. Key events in estrogen signaling were chosen for our studies, such as the activation of ERK and AKT, nuclear translocation of NF-κB and secretion of Interleukin-8 (IL-8). The migration and invasion activities upon E2 stimulation were also examined in ER-negative SKBR3 and BT-20 breast cancer cells. Compared with ER-positive MCF-7 breast cancer cells, both SKBR3 and BT-20 cells had very similar expression of GPER1, but relatively high expression of CXC receptor-1 (CXCR1), which is considered as an active regulator for cancer metastasis upon binding IL-8. Results showed that E2 facilitated the activation of ERK, AKT and NF-κB, which could be significantly attenuated by GPER1 blockage or knock-down in both SKBR3 and BT-20 cells. Moreover, increased secretion of IL-8 induced by E2 was also inhibited either by specific inhibitors for GPER1, ERK, AKT, and NF-κB, or by knock-down for GPER1. Furthermore, E2 could activate the migration and invasion of both SKBR3 and BT-20 cells, which in turn could also be inhibited by blocking GPER1, ERK, AKT, NF-κB, and CXCR1, respectively, or knock-down for GPER1 and CXCR1. In conclusion, we demonstrated that estrogen signaling via GPER1 associated with the metastasis of breast cancer, which might be through GPER1/ERK&AKT/NF-κB/IL-8/CXCR1 cascade. The cross-talk between GPER1 and CXCR1 could be another potential target for the therapy of metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Estradiol/farmacología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-8A/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Interleucina-8/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...