Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 29(9): 1029-1039.e3, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33878292

RESUMEN

PLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization, and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids are critical for proper cellular localization and function, but little is known about how PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we describe the structural basis for recognition of membrane-bound PIPs by PLEHA7. Using X-ray crystallography, nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the interaction of PLEKHA7 with PIPs is multivalent, distinct from a discrete one-to-one interaction, and induces PIP clustering. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for understanding how the PH domain contributes to the signaling, adhesion, and nanoclustering functions of PLEKHA7.


Asunto(s)
Proteínas Portadoras/química , Sitios de Unión , Proteínas Portadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Unión Proteica
2.
Biophys J ; 120(6): 1011-1019, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33607086

RESUMEN

The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30-40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Fenómenos Biomecánicos , Simulación por Computador , Células HEK293 , Humanos , Modelos Biológicos , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Dominios Proteicos , Imagen Individual de Molécula
3.
Glycobiology ; 31(5): 593-602, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33021626

RESUMEN

Glypican-1 and its heparan sulfate (HS) chains play important roles in modulating many biological processes including growth factor signaling. Glypican-1 is bound to a membrane surface via a glycosylphosphatidylinositol (GPI)-anchor. In this study, we used all-atom molecular modeling and simulation to explore the structure, dynamics, and interactions of GPI-anchored glypican-1, three HS chains, membranes, and ions. The folded glypican-1 core structure is stable, but has substantial degrees of freedom in terms of movement and orientation with respect to the membrane due to the long unstructured C-terminal region linking the core to the GPI-anchor. With unique structural features depending on the extent of sulfation, high flexibility of HS chains can promote multi-site interactions with surrounding molecules near and above the membrane. This study is a first step toward all-atom molecular modeling and simulation of the glycocalyx, as well as its modulation of interactions between growth factors and their receptors.


Asunto(s)
Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glipicanos/metabolismo , Heparitina Sulfato/metabolismo , Termodinámica , Membrana Celular/química , Biología Computacional , Glicosilfosfatidilinositoles/química , Glipicanos/química , Heparitina Sulfato/química , Humanos , Modelos Moleculares , Estructura Molecular
4.
bioRxiv ; 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32766576

RESUMEN

The current COVID-19 pandemic has already had a devastating impact across the world. SARS-CoV-2 (the virus causing COVID-19) is known to use its surface spike (S) protein's receptor binding domain (RBD) to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS epidemic. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes a combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approach to quantify the specific interactions between CoV-2 or CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between CoV-2 RBD and ACE2 range from 70 to 110 pN, and are 30-50% higher than those of CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After the removal of N-linked glycans on ACE2, its mechanical binding strength with CoV-2 RBD decreases to a similar level of the CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1, and could aid in the development of new strategies to block SARS-CoV-2 entry.

5.
J Phys Chem B ; 124(20): 4017-4025, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32208709

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) participate in diverse biological processes, such as mood, learning, and addiction. Glycosylphosphatidylinositol-linked lynx1 is an allosteric modulator of nAChR function, including shifts in agonist sensitivity, reduced desensitization, and slower recovery from desensitization. This modulation is thought to be achieved by lynx1's interaction with nAChR subunits, particularly at the α4:α4 interface. In this study, we used molecular modeling and simulation to study the structure, dynamics, and interactions of lynx1 when bound to nAChRs, as well as unbound, monomeric lynx1 in membranes. Though lynx1 structures are similar in both states, its dynamics is more restricted in the bound state than in the unbound one. When bound, interactions between lynx1 and nAChR are observed to be maintained throughout the simulations. Of particular note, lynx1 demonstrates prolonged interactions with the receptor C-loop in one of the nAChR α4 subunits, a region important for agonist binding and possibly the transition between open/closed states. During interactions with lynx1, an α4 C-loop tends to be restricted in either a closed or open state, whereas the C-loop state transitions are more evident when lynx1 is unbound. Interestingly, the conformational change of the C-loop is stochastic, suggesting that lynx1 can influence nAChR (critical for its multimodal action), for instance, by shifting its agonist sensitivity and recovery from desensitization.


Asunto(s)
Receptores Nicotínicos , Proteínas Adaptadoras Transductoras de Señales , Membrana Celular , Modelos Moleculares
6.
J Chem Phys ; 151(12): 124905, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575216

RESUMEN

The von Willebrand Factor (vWF) is a large blood glycoprotein that aids in hemostasis. Within each vWF monomer, the A2 domain hosts a cleavage site for enzyme ADAMTS13, which regulates the size of vWF multimers. This cleavage site can only be exposed when an A2 domain unfolds, and the unfolding reaction energy landscape is highly sensitive to the force conditions on the domain. Based on previous optical tweezer experimental results, we advance here a new activated A2 monomer model (AA2MM) for coarse-grained modeling of vWF that accurately represents the force-based probabilistic change between the unfolded/refolded states. A system of springs is employed to mimic the complex mechanical response of vWF monomers subject to pulling forces. AA2MM was validated by comparing monomer scale simulation results to data from prior pulling experiments on vWF monomer fragments. The model was further validated by comparing multimer scale Brownian dynamics simulation results to experiments using microfluidic chamber microscopy to visualize tethered vWF proteins subject to flow. The A2 domain unfolding reaction was studied in bulk flow simulations (pure shear and elongation flow), giving evidence that elongational flow drives the vWF size regulation process in blood. The mechanoreactive, coarse-grained AA2MM accurately describes the complex mechanical coupling between human blood flow conditions and vWF protein reactivity.


Asunto(s)
Modelos Químicos , Factor de von Willebrand/química , Proteína ADAMTS13/sangre , Proteína ADAMTS13/química , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Dominios Proteicos , Desplegamiento Proteico
7.
Sci Rep ; 8(1): 16017, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375453

RESUMEN

von Willebrand Factor (vWF) is a large multimeric protein that binds to platelets and collagen in blood clotting. vWF A2 domain hosts a proteolytic site for ADAMTS13 (A Disintegrin and Metalloprotease with a ThromboSpondin type 1 motif, member 13) to regulate the size of vWF multimers. This regulation process is highly sensitive to force conditions and protein-glycan interactions as the process occurs in flowing blood. There are two sites on A2 domain (N1515 and N1574) bearing various N-linked glycan structures. In this study, we used molecular dynamics (MD) simulation to study the force-induced unfolding of A2 domain with and without a single N-linked glycan type on each site. The sequential pullout of ß-strands was used to represent a characteristic unfolding sequence of A2. This unfolding sequence varied due to protein-glycan interactions. The force-extension and total energy-extension profiles also show differences in magnitude but similar characteristic shapes between the systems with and without glycans. Systems with N-linked glycans encountered higher energy barriers for full unfolding and even for unfolding up to the point of ADAMTS13 cleavage site exposure. Interestingly, there is not much difference observed for A2 domain structure itself with and without glycans from standard MD simulations, suggesting roles of N-glycans in A2 unfolding through long-ranged protein-glycan interactions.


Asunto(s)
Polisacáridos/química , Polisacáridos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Desplegamiento Proteico , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Proteína ADAMTS13/química , Proteína ADAMTS13/metabolismo , Humanos , Fenómenos Mecánicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Relación Estructura-Actividad
8.
Biophys J ; 115(10): 1860-1871, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30287111

RESUMEN

Using Brownian molecular dynamics simulations, we examine the internal dynamics and biomechanical response of von Willebrand factor (vWF) multimers subject to shear flow. The coarse grain multimer description employed here is based on a monomer model in which the A2 domain of vWF is explicitly represented by a nonlinear elastic spring whose mechanical response was fit to experimental force/extension data from vWF monomers. This permits examination of the dynamic behavior of hydrodynamic forces acting on A2 domains as a function of shear rate and multimer length, as well as position of an A2 domain along the multimer contour. Force/position data reveal that collapsed multimers exhibit a force distribution with two peaks, one near each end of the chain; unraveled multimers, however, show a single peak in A2 domain force near the center of multimers. Guided further by experimental data, significant excursions of force acting on a domain are associated with an increasing probability for A2 domain unfolding. Our results suggest that the threshold shear rate required to induce A2 domain unfolding is inversely proportional to multimer length. By examining data for the duration and location of significant force excursions, convincing evidence is advanced that unfolding of A2 domains, and therefore scission of vWF multimers by the size-regulating blood enzyme ADAMTS13, happen preferentially near the center of unraveled multimers.


Asunto(s)
Multimerización de Proteína , Desplegamiento Proteico , Resistencia al Corte , Resistencia a la Tracción , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Proteína ADAMTS13/metabolismo , Fenómenos Biomecánicos , Modelos Moleculares , Dominios Proteicos , Estructura Cuaternaria de Proteína
9.
Biophys J ; 114(8): 1816-1829, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694861

RESUMEN

Von Willebrand factor (VWF) is a large multimeric protein that aids in blood clotting. Near injury sites, hydrodynamic force from increased blood flow elongates VWF, exposing binding sites for platelets and collagen. To investigate VWF binding to collagen that is exposed on injured arterial surfaces, Brownian dynamics simulations are performed with a coarse-grain molecular model. Accounting for hydrodynamic interactions in the presence of a stationary surface, shear flow conditions are modeled. Binding between beads in coarse-grain VWF and collagen sites on the surface is described via reversible ligand-receptor-type bond formation, which is governed via Bell model kinetics. For conditions in which binding is energetically favored, the model predicts a high probability for binding at low shear conditions; this is counter to experimental observations but in agreement with what prior modeling studies have revealed. To address this discrepancy, an additional binding criterion that depends on the conformation of a submonomer feature in the model local to a given VWF binding site is implemented. The modified model predicts shear-induced binding, in very good agreement with experimental observations; this is true even for conditions in which binding is significantly favored energetically. Biological implications of the model modification are discussed in terms of mechanisms of VWF activity.


Asunto(s)
Colágeno/metabolismo , Modelos Moleculares , Resistencia al Corte , Factor de von Willebrand/metabolismo , Fenómenos Biomecánicos , Probabilidad , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...