Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38977546

RESUMEN

Because of their excellent plasticity, phthalates or phthalic acid esters (PAEs) are widely used in plastic products. However, due to the recognized toxicity of PAEs and legislative requirements, the production and use of emerging PAE alternatives have rapidly grown, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHTP) which are the primary replacements for classic PAEs. Nowadays, PAEs and emerging PAE alternatives are frequently found in a variety of environmental media, including the atmosphere, sludge, rivers, and seawater/sediment. PAEs and emerging PAE alternatives are involved in endocrine-disrupting effects, and they affect the reproductive physiology of different species of fish and mammals. Therefore, their presence in the environment is of considerable concern due to their potential effects on ecosystem function and public health. Nevertheless, current research on the prevalence, destiny, and conduct of PAEs in the environment has primarily focused on classic PAEs, with little attention given to emerging PAE alternatives. The present article furnishes a synopsis of the physicochemical characteristics, occurrence, transport, fate, and adverse effects of both classic PAEs and emerging PAE alternatives on organisms in the ecosystem. Our analysis reveals that both classic PAEs and emerging PAE alternatives are widely distributed in all environmental media, with emerging PAE alternatives increasingly replacing classic PAEs. Various pathways can transform and degrade both classic PAEs and emerging PAE alternatives, and their own and related metabolites can have toxic effects on organisms. This research offers a more extensive comprehension of the health hazards associated with classic PAEs and emerging PAE alternatives.

2.
Environ Res ; 243: 117864, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072105

RESUMEN

Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Ecosistema , Plásticos , Tecnología
3.
Environ Pollut ; 342: 123034, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016589

RESUMEN

The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.


Asunto(s)
Plásticos , Poliestirenos , Poliestirenos/metabolismo , Plásticos/metabolismo , Biodegradación Ambiental , Carbono
4.
J Hazard Mater ; 459: 132066, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467608

RESUMEN

Thiacloprid (THI) has accumulated significantly in agricultural soil. Herein, a novel approach to removing THI was explored by straw biochar-loaded iron and manganese oxides (FeMn@BC) to activate the persulfate (PS). The factors influencing the removal of 5 mg kg-1 THI from the soil by FeMn@BC/PS were investigated, including FeMn@BC dosing, PS dosing, temperature, and soil microorganisms. The feasibility was demonstrated by the 75.22% removal rate of THI with 3% FeMn@BC and 2% PS at 7 days and a 92.50% removal rate within 60 days. Compared to the THI, NH4+-N and available potassium were 3.96 and 3.25 times, and urease and phosphatase activities were increased by 22.54% and 33.28% in the FeMn@BC/PS at the 15 days, respectively. THI was found to seriously alter the structure of the genus in the 15 days by 16 S rRNA analysis; however, the FeMn@BC/PS group alleviated the damage, compared to the THI with 658 more operational taxonomic units. Actinobacteriota accounted for 51.48% of the microbial community in the FeMn@BC/PS group after 60 days, possibly converting transition products of THI into smaller molecules. This article provides a novel insight into advanced oxidative remediation of soils.


Asunto(s)
Hierro , Contaminantes del Suelo , Hierro/química , Manganeso , Suelo/química , Carbón Orgánico/química , Óxidos , Contaminantes del Suelo/análisis
5.
J Hazard Mater ; 448: 130878, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731319

RESUMEN

Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.


Asunto(s)
Basidiomycota , Phanerochaete , Plásticos/metabolismo , Peroxidasas/metabolismo , Basidiomycota/metabolismo , Hongos/metabolismo , Biodegradación Ambiental , Poliésteres , Phanerochaete/metabolismo , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...