Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 452: 114569, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37419331

RESUMEN

This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Trombospondina 1 , Neuroblastoma/tratamiento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fármacos Neuroprotectores/farmacología , Neuroprotección , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Front Oncol ; 11: 717917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650914

RESUMEN

Glioma is a highly heterogeneous and lethal tumor with an extremely poor prognosis. Through analysis of TCGA data, we identified that OLFML2A is a key promotor of gliomagenesis. However, the molecular function of OLFML2A and its underlying mechanism of action in glioma remain unclear. In this study, we found that OLFML2A expression was significantly upregulated in glioma specimens and positively correlated with pathological grades in glioma patients. Moreover, Kaplan-Meier survival analysis of TCGA data revealed that glioma patients with higher OLFML2A expression had shorter overall survival. Importantly, OLFML2A knockdown in glioma cells inhibited cell proliferation and promoted apoptosis. Mechanistically, OLFML2A downregulation inhibits Wnt/ß-catenin signaling by upregulating amyloid precursor protein (APP) expression and reducing stabilized ß-catenin levels, leading to the repression of MYC, CD44, and CSKN2A2 expression. Furthermore, OLFML2A downregulation suppressed the growth of transplanted glioma subcutaneously and intracranially by inhibiting Wnt/ß-catenin pathway-dependent cell proliferation. By uncovering the oncogenic effects in human and rodent gliomas, our data support OLFML2A as a potential therapeutic target for glioma.

3.
Neuropsychiatr Dis Treat ; 15: 405-416, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787615

RESUMEN

OBJECTIVES: Despite the availability of effective antiepileptic drugs, epileptic patients still suffer from intractable seizures and adverse events. Better control of both seizures and fewer side effects is needed in order to enhance the patient's quality of life. We performed the present study with an attempt to explore the effect that HDAC4 gene silencing would have on epilepsy simulated by model rats. Furthermore, the study made additional analysis on the relativity of the HDAC4 gene in regard to its relationship with the gamma-aminobutyric acid (GABA) signaling pathway. MATERIALS AND METHODS: Tremor rats were prepared in order to establish the epilepsy model. The rats would go on to be treated with si-HDAC4 in order to identify roles of the HDAC4 in levels of GABAARα1, GABAARα4, GAD65, GAT-1, and GAT-3. Finally, both electroencephalogram behavior and cognitive function of the rats following the treatment of si-HDAC4 were observed. RESULTS: Levels of the GABAARα1 and GABAARα4 showed an evident increase, while GAD65, GAT-1, and GAT-3 displayed a decline in the epilepsy rats treated with the aforementioned si-HDAC4 when compared with the epilepsy rats. After injection of si-HDAC4, the epilepsy rats presented with a reduction in seizure degree, latency and duration of seizure, amount of scattered epileptic waves, and occurrence of epilepsy, with an improvement in their cognitive function. CONCLUSION: The study highlighted the role that HDAC4 gene silencing played in easing the cases of epilepsy found in the model rats. This was shown to have occurred through the upregulation of both GABAARα1 and GABAARα4 levels, as well as in the downregulation of GAD65, GAT-1, and GAT-3 levels. The evidence provided shows that the HDAC4 gene is likely to present as a new objective in further experimentation in the treatment of epilepsy.

4.
Mol Neurobiol ; 56(2): 954-962, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29808380

RESUMEN

Myeloperoxidase (MPO) has paradoxically been found to be able to both activate matrix metalloproteinases (MMPs) as well as inhibit MMPs. However, these regulatory effects have not yet been observed in vivo, and it is unclear which pathway is relevant in vivo. We aim to track MPO regulation of MMP activity in living animals in neuroinflammation. Mice induced with experimental autoimmune encephalomyelitis (EAE), a mouse model of neuroinflammation and multiple sclerosis, were treated with either the MPO-specific inhibitor 4-aminobenzoic acid hydrazide or saline as control. Mice underwent concurrent magnetic resonance imaging (MRI) with the MPO-specific molecular imaging agent MPO-Gd and fluorescence molecular tomography (FMT) with the MMP-targeting agent MMPsense on day 12 after induction. Biochemical and histopathological correlations were performed. Utilizing concurrent MRI and FMT imaging, we found reduced MMP activity in the brain with MPO inhibition, demonstrating MPO activity positively regulates MMP activity in vivo. In vivo MMPSense activation and MMP-9 activity correlated with MPO-Gd+ lesion volume and disease severity. This was corroborated by in vitro assays and histopathological analyses that showed MMP activity and MMP-9+ cells correlated with MPO activity and MPO+ cells. In conclusion, multimodal molecular imaging demonstrates for the first time MPO regulation of MMP activity in living animals. This approach could serve as a model to study the interactions of other biologically interesting molecules in living organisms.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz/metabolismo , Peroxidasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Femenino , Imagen por Resonancia Magnética/métodos , Ratones , Imagen Molecular/métodos
5.
IUBMB Life ; 71(2): 213-222, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30360015

RESUMEN

This study aimed to identify the genes related to epilepsy and their effects on epilepsy, as well as the underlying mechanism. Using microarray analysis, differentially expressed genes (DEGs) were screened out and then used to build weighted gene coexpression networks using WGCNA. Module membership and evaluation of gene significance (GS) were adopted to detect hub genes. The DAVID online tool was used to understand the function of modules and target genes. The Licl-pilocarpine chronic rat epilepsy model was used to simulate mesial temporal lobe epilepsy with an initial precipitating injury. Hippocampal expression of the proteins solute carrier family 1 member 2 (SLC1A2), glial fibrillary acidic protein, interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), and N-methyl-d-aspartic acid receptor (NMDAR) was determined by ELISA and Western blot. Nissl staining was used to measure neuronal loss. Immunohistochemistry was performed to assess the percentage of positive cells to reflect the distribution of NMDAR1. Here, 3232 potential genes highly correlated with epilepsy were selected from the screened DEGs, among which SLC1A2 was related to brain development and its expression was significantly decreased in epilepsy patients. According to Gene Ontology and KEGG analysis, SLC1A2 mediates epilepsy through the glutamatergic synapse pathway. Tissue experiments suggested that Slc1a2 could genuinely ameliorate epilepsy through the glutamatergic synapse pathway, mitigate neuronal loss, and suppress astrocytosis and inflammatory responses. Our study suggested that low hippocampal content of SLC1A2 is a potential biomarker of epilepsy and may affect the function of neurons through the glutamatergic synapse pathway. © 2018 IUBMB Life, 71(1):213-222, 2019.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Transportador 2 de Aminoácidos Excitadores/genética , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Muerte Celular , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cloruro de Litio/administración & dosificación , Masculino , Neuronas/patología , Pilocarpina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Transmisión Sináptica , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...