Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(3): 1283-1301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486997

RESUMEN

The role of co-agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) in chronic kidney disease (CKD) remains unclear. Herein we found that GLP-1R and GCGR expression levels were lower in the kidneys of mice with CKD compared to healthy mice and were correlated with disease severity. Interestingly, GLP-1R or GCGR knockdown aggravated the progression of kidney injury in both diabetic db/db mice and non-diabetic mice undergoing unilateral ureteral obstruction (UUO). Based on the importance of GLP-1R and GCGR in CKD, we reported a novel monomeric peptide, 1907-B, with dual-agonism on both GLP-1R and GCGR. The data confirmed that 1907-B had a longer half-life than long-acting semaglutide in rats or cynomolgus monkeys (∼2-3 fold) and exhibited better therapeutic contribution to CKD than best-in-class monoagonists, semaglutide, or glucagon, in db/db mice and UUO mice. Various lock-of-function models, including selective pharmacological activation and genetic knockdown, confirmed that 1907-B's effects on ameliorating diabetic nephropathy in db/db mice, as well as inhibiting kidney fibrosis in UUO mice, were mediated through GLP-1 and glucagon signaling. These findings highlight that 1907-B, a novel GLP-1R and GCGR co-agonist, exerts multifactorial improvement in kidney injuries and is an effective and promising therapeutic option for CKD treatment.

2.
Cell Biochem Funct ; 42(2): e3975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38475877

RESUMEN

Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 µg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 µg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.


Asunto(s)
Lacticaseibacillus paracasei , Selenio , Percepción de Quorum , Antioxidantes/farmacología , Selenio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biopelículas
3.
Biomaterials ; 307: 122515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401481

RESUMEN

Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.


Asunto(s)
Antiinfecciosos , Zeolitas , Oseointegración , Peróxido de Hidrógeno/farmacología , Macrófagos , Antiinfecciosos/farmacología , Osteogénesis
4.
Matrix Biol ; 127: 8-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281553

RESUMEN

Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor ß1 (TGFß1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFß1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.


Asunto(s)
Ligamento Amarillo , Proteína smad3 , Trombospondinas , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Fibrosis , Hipertrofia/metabolismo , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Transducción de Señal , Estrés Mecánico , Trombospondinas/genética , Trombospondinas/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
5.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514625

RESUMEN

China is the largest producer and consumer of rice, and the classification of filled/unfilled rice grains is of great significance for rice breeding and genetic analysis. The traditional method for filled/unfilled rice grain identification was generally manual, which had the disadvantages of low efficiency, poor repeatability, and low precision. In this study, we have proposed a novel method for filled/unfilled grain classification based on structured light imaging and Improved PointNet++. Firstly, the 3D point cloud data of rice grains were obtained by structured light imaging. And then the specified processing algorithms were developed for the single grain segmentation, and data enhancement with normal vector. Finally, the PointNet++ network was improved by adding an additional Set Abstraction layer and combining the maximum pooling of normal vectors to realize filled/unfilled rice grain point cloud classification. To verify the model performance, the Improved PointNet++ was compared with six machine learning methods, PointNet and PointConv. The results showed that the optimal machine learning model is XGboost, with a classification accuracy of 91.99%, while the classification accuracy of Improved PointNet++ was 98.50% outperforming the PointNet 93.75% and PointConv 92.25%. In conclusion, this study has demonstrated a novel and effective method for filled/unfilled grain recognition.

6.
J Med Chem ; 66(12): 8251-8266, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37279405

RESUMEN

Kidney fibrosis is a serious consequence of chronic kidney disease (CKD), and currently, there is no effective pharmacological treatment available. Cellular communication network-2 (CCN2/CTGF) is an extracellular matrix (ECM) protein that regulates the fibrotic process by activating the epidermal growth factor receptor (EGFR) signaling pathway. We herein present the discovery and structure-activity relationship study of novel peptides targeting CCN2 to develop potent and stable specific inhibitors of the CCN2/EGFR interaction. Remarkably, the 7-mer cyclic peptide OK2 exhibited potent activities to inhibit CCN2/EGFR-induced STAT3 phosphorylation and cellular ECM protein synthesis. Subsequent in vivo studies demonstrated that OK2 significantly alleviated renal fibrosis in a unilateral ureteral obstruction (UUO) mouse model. Moreover, this study first revealed that the peptide candidate could efficiently block CCN2/EGFR interaction through binding to the CT domain of CCN2, providing a new alternative strategy for peptide-based targeting of CCN2 and modulating CCN2/EGFR-mediated biological functions in kidney fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Péptidos Cíclicos , Ratones , Animales , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Receptores ErbB/metabolismo , Riñón/metabolismo , Fibrosis
7.
Small ; 19(17): e2207266, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693790

RESUMEN

Exploiting clean energy is essential for sustainable development and sunlight-driven photocatalytic water splitting represents one of the most promising approaches toward this goal. Metal-organic frameworks (MOFs) are competent photocatalysts owing to their tailorable functionality, well-defined structure, and high porosity. Yet, the introduction of the unambiguous metal-centered active site into MOFs is still challenging since framework motifs capable of anchoring metal ions firmly are lacking. Herein, the assembly using 1,4-dicarboxylbenzene-2,3-dithiol (H2 dcbdt) and Zr-Oxo clusters to give a thiol-functionalized UiO-66 type framework, UiO-66-dcbdt, is reported. The thiocatechols on the struts are allowed to capture transition metal (TM) ions to generate UiO-66-dcbdt-M (M  = Fe, Ni, Cu) with unambiguous metal-thiocatecholate moieties for photocatalytic hydrogen evolution reaction (HER). UiO-66-dcbdt-Cu is found the best catalyst exhibiting an HER rate of 4.18 mmol g-1  h-1  upon irradiation with photosensitizing Ru-polypyridyl complex. To skip the use of the external sensitizer, UiO-66-dcbdt-Cu is heterojunctioned with titanium dioxide (TiO2 ) and achieves an HER rate of 12.63 mmol g-1  h-1  (32.3 times that of primitive TiO2 ). This work represents the first example of MOF assembly employing H2 dcbdt as the mere linker followed by chelation with TM ions and undoubtedly fuels the rational design of MOF photocatalysts bearing well-defined active sites.

8.
Mater Today Bio ; 18: 100508, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504542

RESUMEN

Poor wound healing after diabetes mellitus remains a challenging problem, and its pathophysiological mechanisms have not yet been fully elucidated. Persistent bleeding, disturbed regulation of inflammation, blocked cell proliferation, susceptible infection and impaired tissue remodeling are the main features of diabetic wound healing. Conventional wound dressings, including gauze, films and bandages, have a limited function. They generally act as physical barriers and absorbers of exudates, which fail to meet the requirements of the whol diabetic wound healing process. Wounds in diabetic patients typically heal slowly and are susceptible to infection due to hyperglycemia within the wound bed. Once bacterial cells develop into biofilms, diabetic wounds will exhibit robust drug resistance. Recently, the application of stimuli-responsive hydrogels, also known as "smart hydrogels", for diabetic wound healing has attracted particular attention. The basic feature of this system is its capacities to change mechanical properties, swelling ability, hydrophilicity, permeability of biologically active molecules, etc., in response to various stimuli, including temperature, potential of hydrogen (pH), protease and other biological factors. Smart hydrogels can improve therapeutic efficacy and limit total toxicity according to the characteristics of diabetic wounds. In this review, we summarized the mechanism and application of stimuli-responsive hydrogels for diabetic wound healing. It is hoped that this work will provide some inspiration and suggestions for research in this field.

9.
Biomater Res ; 26(1): 72, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471454

RESUMEN

Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.

10.
Front Immunol ; 13: 973799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275675

RESUMEN

Background: Fibrosis is a core pathological factor of ligamentum flavum hypertrophy (LFH) resulting in degenerative lumbar spinal stenosis. Autophagy plays a vital role in multi-organ fibrosis. However, autophagy has not been reported to be involved in the pathogenesis of LFH. Methods: The LFH microarray data set GSE113212, derived from Gene Expression Omnibus, was analyzed to obtain differentially expressed genes (DEGs). Potential autophagy-related genes (ARGs) were obtained with the human autophagy regulator database. Functional analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were conducted to elucidate the underlying biological pathways of autophagy regulating LFH. Protein-protein interaction (PPI) network analyses was used to obtain hub ARGs. Using transmission electron microscopy, quantitative RT-PCR, Western blotting, and immunohistochemistry, we identified six hub ARGs in clinical specimens and bipedal standing (BS) mouse model. Results: A total of 70 potential differentially expressed ARGs were screened, including 50 up-regulated and 20 down-regulated genes. According to GO enrichment and KEGG analyses, differentially expressed ARGs were mainly enriched in autophagy-related enrichment terms and signaling pathways related to autophagy. GSEA and GSVA results revealed the potential mechanisms by demonstrating the signaling pathways and biological processes closely related to LFH. Based on PPI network analysis, 14 hub ARGs were identified. Using transmission electron microscopy, we observed the autophagy process in LF tissues for the first time. Quantitative RT-PCR, Western blotting, and immunohistochemistry results indicated that the mRNA and protein expression levels of FN1, TGFß1, NGF, and HMOX1 significantly higher both in human and mouse with LFH, while the mRNA and protein expression levels of CAT and SIRT1 were significantly decreased. Conclusion: Based on bioinformatics analysis and further experimental validation in clinical specimens and the BS mouse model, six potential ARGs including FN1, TGFß1, NGF, HMOX1, CAT, and SIRT1 were found to participate in the fibrosis process of LFH through autophagy and play an essential role in its molecular mechanism. These potential genes may serve as specific therapeutic molecular targets in the treatment of LFH.


Asunto(s)
Ligamento Amarillo , Humanos , Ratones , Animales , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Sirtuina 1/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Hipertrofia/metabolismo , Autofagia/genética , Fibrosis , ARN Mensajero/metabolismo
11.
Int J Med Sci ; 19(10): 1510-1518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185336

RESUMEN

Background: The most common spinal disorder in elderly is lumbar spinal canal stenosis (LSCS). Previous studies showed that ligamentum flavum hypertrophy (LFH) with fibrosis as the main pathological change is one of the pathogenic factors leading to LSCS. Epidermal Growth Factor (EGF) is known to have an intimate relationship with fibrosis in various tissues. Nevertheless, currently, there are few studies regarding EGF in LFH. The effect of EGF on the development of LFH is unknown, and the underlying pathomechanism remains unclear. In this study, we investigated the role of EGF in LFH and its potential molecular mechanism. Methods: First, the expression levels of EGF, phosphorylation of EGF receptor (pEGFR), Transforming growth factor-ß1 (TGF-ß1), Phosphorylated Smad3 (pSmad3), collagen I and collagen III were examined via immunohistochemistry and Western blot in LF tissues from patients with LSCS or Non-LSCS. Second, primary LF cells were isolated from adults with normal LF thickness and were cultured with different concentrations of exogenous EGF with or without erlotinib/TGF-ß1-neutralizing antibody. Results: The results showed that EGF, pEGFR, TGF-ß1, pSmad3, collagen I and collagen III protein expression in the LSCS group was significantly higher than that in the Non-LSCS group. Meanwhile, pEGFR, TGF-ß1, pSmad3, collagen I and collagen III protein expression was significantly enhanced in LF cells after exogenous EGF exposure, which can be notably blocked by erlotinib. In addition, pSmad3, collagen I and collagen III protein expression was blocked by TGF-ß1-neutralizing antibody. Conclusions: EGF promotes the synthesis of collagen I and collagen III via the TGF-ß1/Smad3 signaling pathway, which eventually contributes to LFH.


Asunto(s)
Ligamento Amarillo , Estenosis Espinal , Adulto , Anciano , Anticuerpos Neutralizantes/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/metabolismo , Fibrosis , Humanos , Hipertrofia/metabolismo , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Transducción de Señal , Proteína smad3/genética , Proteína smad3/metabolismo , Estenosis Espinal/metabolismo , Estenosis Espinal/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
12.
Front Surg ; 9: 819530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211502

RESUMEN

BACKGROUND: Total hip arthroplasty (THA) using the direct anterior approach (DAA) is becoming increasingly popular due to its potential benefits over the posterolateral approach (PLA). However, few studies have compared the efficacies of these two surgical approaches in hip fusion treatment. This study compared early clinical direct anterior and posterolateral THA outcomes in hip fusion treatment. METHODS: Here, 127 hips (65 DAA, 62 PLA) were retrospectively evaluated. Early postoperative functional outcomes of DAA and PLA groups were assessed using Harris score and Oxford Hip Score (OHS) and standard anteroposterior hip radiographs. Surgical characteristics, perioperative results, and complications within 6 months postoperatively were recorded. RESULTS: Though baseline values were similar, Harris and OHS scores were better in the DAA group than in the PLA group at 1 and 3 months postoperatively. The average cup anteversion angle was significantly greater in the DAA group than in the PLA group (12.7° vs. 11.1°). More hips undergoing DAA were successfully orientated in both inclination and anteversion angles (46 vs. 32). Early postoperative hip function predictors were preoperative fused hip position, surgical approach, and range of motion. DAA was associated with reduced postoperative blood loss and shorter hospital stays. Furthermore, 14 vs. 8 complications occurred in the DAA vs. PLA group. Lateral femoral cutaneous nerve injuries were observed in eight hips (12.3%) of the DAA group. CONCLUSION: For fused or ankylosed hips, THA using DAA in the lateral decubitus position may result in excellent prosthesis positioning and faster postoperative recovery throughout early follow-up vs. PLA.

13.
Genomics ; 114(2): 110285, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124174

RESUMEN

The unclear molecular mechanism by which peanuts adapt to chilling stress limits progress in molecular breeding for peanut chilling tolerance. Here, the physiological and transcriptional differences between two genotypes with contrasting tolerance under chilling stress were compared. The inhibition of photosynthesis mainly caused by stomatal factors was a common response of peanut seedlings to chilling stress. Chilling-tolerant genotypes could inhibit the accumulation of ROS to adapt to chilling stress, and enhanced activities of CAT and APX were major causes of lower H2O2 content. The results of a conjoint analysis of physiological indices and the RNA-Seq database by WGCNA indicated that the genes in key modules were significantly enriched in pathways related to the oxidation-reduction process. Hub genes encoding RLK, CAT, MYC4, AOS, GST, PP2C, UPL5 and ZFP8 were likely to positively regulate peanut chilling tolerance, but hub genes encoding PAO, NAC2 and NAC72 were likely to negatively regulate peanut chilling tolerance.


Asunto(s)
Arachis , Transcriptoma , Arachis/genética , Arachis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética
14.
ACS Appl Mater Interfaces ; 14(1): 1070-1076, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34955027

RESUMEN

With 2-COOH and 4-SH donors all packed onto the benzene ring, tetrasulfanyl terephthalic acid (TST) is a simple yet fully equipped ligand to move the field of metal-coordination materials─it is now accomplished. The hard-soft carboxyl-thiol synergy is leveraged here in selectively bonding the carboxyl units to Zr(IV) ions to form the same cubic net of UiO-66 (this being based on the terephthalic linker)─with the free-standing dithiolene units equipping the grid of ZrTST. The 3D network of ZrTST averages about 7.6 connections [as in Zr6O4(OH)4(C8H4O4S4)3.8], with the other 4.4 sealed by acetate ions. The ZrTST solid is stable in boiling water (it is formed in water/acetic acid/ethane dithiol) and remains ordered even above 300 °C. The thiol-enabled ZrTST (powder) takes up mercury from water with a high distribution coefficient Kd (e.g., 1.2 × 106 mL·g-1); it also shows proton conductivity (1.9 × 10-3 S·cm-1 at 90 °C and 90% relative humidity), which, most notably, increases to a highest value of 3.7 × 10-1 S·cm-1 after oxidizing the -SH into the -SO3H groups.

15.
Physiol Plant ; 174(1): e13610, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34888889

RESUMEN

Drought stress has been the major constraint on peanut yield and quality, and an understanding of the function of long non-coding (lncRNAs) in the peanut drought stress response is still in its infancy. In this study, two peanut varieties with contrasting drought tolerance were used to explore the functions of lncRNAs in the peanut drought response, and the results showed that the drought-tolerant variety presented greater antioxidant enzyme activity, osmotic adjustment ability, and photosynthesis under drought conditions. There were 4329 lncRNAs identified in the two varieties, of which 535 and 663 lncRNAs were differentially expressed in NH5 and FH18, respectively. The cis targets of the differentially expressed lncRNAs were putatively involved in secondary metabolite biosynthesis and other basic metabolic processes. A total of 673 competing endogenous RNA (ceRNA) pairs were selected specifically in NH5, and the associated ceRNA network revealed six lncRNAs, MSTRG.70535.2, MSTRG.86570.2, MSTRG.86570.1, MSTRG.100618.1, MSTRG.81214.2, and MSTRG.30931.1were considered as hub nodes. They were speculated to contribute to enhancing peanut drought tolerance, such as regulating transcription and plant growth processes, thereby improving the drought stress response. In this study, lncRNAs and mRNAs interaction networks were constructed to aid a comprehensive understanding of the peanut drought stress response and form a basis for future research.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Arachis/genética , Biomarcadores , Sequías , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética
16.
Front Microbiol ; 12: 678250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108953

RESUMEN

Soil microorganisms play important roles in crop production and sustainable agricultural management. However, soil conditions and crop selection are key determining factors for soil microbial communities. This study investigated the effect of plant types and soil salinity on the microbial community of interspecific interaction zone (II) based on the sorghum/peanut intercropping system. Microbial community diversity and composition were determined through PacBio single molecule, real-time sequencing of 16S rDNA and internal transcribed spacer (ITS) genes. Results showed Proteobacteria, Bacteroidota, and Acidobacteriota to be the dominant bacterial phyla in IP, II, and IS, whereas Ascomycota, Basidiomycota, and Mucoromycota were the dominant fungal phyla. Under salt-treated soil conditions, the plants-specific response altered the composition of the microbial community (diversity and abundance). Additionally, the interspecific interactions were also helpful for maintaining the stability and ecological functions of microbial communities by restructuring the otherwise stable core microbiome. The phylogenetic structure of the bacterial community was greatly similar between IP and II while that of the fungal community was greatly similar between IP and IS; however, the phylogenetic distance between IP and IS increased remarkably upon salinity stress. Overall, salinity was a dominant factor shaping the microbial community structure, although plants could also shape the rhizosphere microenvironment by host specificity when subjected to environmental stresses. In particular, peanut still exerted a greater influence on the microbial community of the interaction zone than sorghum.

17.
J Healthc Eng ; 2021: 6678031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007428

RESUMEN

The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image synthesis. In this paper, the fusion-ROI patch GAN (Fproi-GAN) model was constructed by incorporating a priori regional feature based on the two-stage cycle consistency mechanism of cycleGAN. This model has improved the tissue contrast of ROI and achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. The quantitative evaluation results in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of 0.981 ± 0.11 and a Hausdorff distance of 4.21 ± 2.84 relative to the original images. The classification experimental results show that the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance of prediction models, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGAN method. Hence, the paired medical images synthesized using Fproi-GAN have high quality and structural consistency with real medical images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
18.
DNA Cell Biol ; 40(2): 373-383, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373540

RESUMEN

Peanut is an important crash crop worldwide, and it is often threatened by drought stress due to unexpected extreme weather events. In this work, NH5 and FH18 were selected as drought-tolerant and drought-sensitive varieties, respectively. Comparison of their physiological responses revealed that NH5 showed less wilting, higher relative water content and lower water loss rate of detached leaves, lower electrolyte leakage, and stronger antioxidant ability under drought stress than did FH18. Based on comparative transcriptomic analysis, 5376 differentially expressed mRNAs were commonly identified in the two varieties, and 2993 genes specifically changed in the drought-tolerant variety and were mainly enriched in photosynthesis-antenna proteins and photosynthetic pathways. Furthermore, 73 microRNAs (miRNAs) were differentially expressed in the drought tolerance variety specifically under drought stress; of these, two key candidate miRNAs, novel miR_416 and novel miR_73, were identified, and the majority of their target genes were enriched in phenylpropanoid biosynthesis, linoleic acid metabolism, and cutin, suberine, and wax biosynthesis. This study lays the foundation for the analysis of the molecular mechanism of drought tolerance and promotes the genetic improvement of peanut drought tolerance.


Asunto(s)
Arachis/genética , Arachis/fisiología , Sequías , Genes de Plantas/genética , Genómica , MicroARNs/genética
19.
ACS Appl Mater Interfaces ; 12(49): 55342-55348, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33249830

RESUMEN

Charge extraction layers with excellent charge extraction capability are essential for achieving high photovoltaic performance in cells. In this work, a hole extraction layer (HEL) is developed by doping conductive polymer TFB into CuSCN (CuSCN:TFB(X)), which exhibits good light transparency and high affinity for the light absorber. Compared to the reference cell, the CuSCN:TFB(X) HEL-based cells show impressive enhancement owing to the increased exciton dissociation and charge extraction processes and weak recombination losses. Furthermore, matched work function, better interface contact, and appropriate domain size also contribute to the enhanced power conversion efficiency. As a consequence, the highest conversion efficiency of 15.28% is observed in a cell based on the PM6:Y6 blend film and CuSCN:TFB(1.0%) HEL, which is >16% higher than the efficiency of 13.13% in a cell with CuSCN HEL.

20.
ACS Appl Mater Interfaces ; 12(41): 46373-46380, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32945159

RESUMEN

The hole transporting layers (HTLs) between the electrode and light absorber play a vital role in charge extraction and transport processes in organic solar cells (OSCs). Herein, a bilayer structure HTL of CuSCN/TFB is formed by soluble copper(I) thiocyanate (CuSCN) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl)))] (TFB). The excellent charge extraction capability is proved in nonfullerene PM6:Y6 and fullerene PTB7-Th:PC71BM blend system-based cells. The introduction of TFB tunes the work function and polishes the interfacial contact between the HTL and light absorber, which favors the hole extraction process in cells. Meanwhile, lower recombination loss, higher exciton dissociation probability, and larger domain size are observed in CuSCN/TFB HTL-based cells compared to those of the reference cell with the pristine CuSCN HTL, which significantly improve the photovoltaic performance. As a result, a champion efficiency of 15.10% is obtained, which is >14% higher than the efficiency of 13.15% obtained in the reference cell. This study suggests that CuSCN/TFB is a promising HTL to achieve high efficiency for OSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...