Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1060686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714721

RESUMEN

The alpine sandy dune ecosystem is highly vulnerable to global climate change. Ecological stoichiometry in plants and soils plays a crucial role in biogeochemical cycles, energy flow and functioning in ecosystems. The alpine sandy dune ecosystem is highly vulnerable to global climate change. However, the stoichiometric changes and correlations of plants and soils among different types of sandy dunes have not been fully explored. Three sandy dune types (moving dune, MD; semifixed dune, SFD; and fixed dune, FD) of the Sophora moorcroftiana shrub in the middle reaches of the Yarlung Zangbo River were used as the subjects in the current study. Plant community characteristics, soil physicochemical properties, carbon (C), nitrogen (N), and phosphorus (P) contents of leaves, understorey herbs, litter, and soil microbes were evaluated to explore the C:N:P stoichiometry and its driving factors. Sandy dune type significant affected on the C:N:P stoichiometry in plants and soils. High soil N:P ratio was observed in FD and high plant C:P and N:P ratios in SFD and MD. The C:N ratio decreased with sand dune stabilization compared with other stoichiometric ratios of soil resources. Leaf C:P and N:P ratios in S. moorcroftiana were higher than those in the understorey herb biomass, because of the low P concentrations in leaves. C, N and P contents and stoichiometry of leaves, understorey herbs, litter and microbe were significantly correlated with the soil C, N and P contents and stoichiometry, with a higher correlation for soil N:P ratio. P was the mainly limiting factor for the growth of S. moorcroftiana population in the study area and its demand became increasingly critical with the increase in shrub age. The variation in the C:N:P stoichiometry in plants and soils was mainly modulated by the soil physicochemical properties, mainly for soil moisture, pH, available P and dissolved organic C. These findings provide key information on the nutrient stoichiometry patterns, element distribution and utilization strategies of C, N and P and as well as scrubland restoration and management in alpine valley sand ecosystems.

2.
Mitochondrial DNA B Resour ; 6(8): 2105-2106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34250231

RESUMEN

The complete chloroplast genome of Pennisetum centrasiaticum was sequenced and reported here. The total genome size was 138,294 bp in length, containing a large single-copy region of 81,229 bp, a small single-copy region of 12,419 bp, and a pair of inverted repeat regions of 22,288 bp. The GC content of P. centrasiaticum chloroplast genome was 38.6%. It encodes a total of 119 unique genes, including 81 protein-coding genes, 34 tRNA genes, and four rRNA genes. Phylogenetic analysis showed a strong sister relationship with Cenchrus ciliaris and Cenchrus purpureus. Our findings provide fundamental information for further evolutionary and phylogenetic researches of P. centrasiaticum.

3.
Mol Biotechnol ; 62(8): 387-399, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32572810

RESUMEN

D-Glucosamine is a commonly used dietary supplement that promotes cartilage health in humans. Metabolic flux analysis showed that D-glucosamine production could be increased by blocking three pathways involved in the consumption of glucosamine-6-phosphate and acetylglucosamine-6-phosphate. By homologous single-exchange, two key genes (nanE and murQ) of Escherichia coli BL21 were knocked out, respectively. The D-glucosamine yields of the engineered strains E. coli BL21ΔmurQ and E. coli BL21ΔnanE represented increases by factors of 2.14 and 1.79, respectively. Meanwhile, for bifunctional gene glmU, we only knocked out its glucosamine-1-phosphate acetyltransferase domain by 3D structural analysis to keep the engineered strain E. coli BL21glmU-Δgpa survival, which resulted in an increase in the production of D-glucosamine by a factor of 2.16. Moreover, for further increasing D-glucosamine production, two genes encoding rate-limiting enzymes, named glmS and gna1, were coexpressed by an RBS sequence in those engineered strains. The total concentrations of D-glucosamine in E. coli BL21 glmU-Δgpa', E. coli BL21ΔmurQ', and E. coli BL21ΔnanE' were 2.65 g/L, 1.73 g/L, and 1.38 g/L, which represented increases by factors of 8.83, 5.76, and 3.3, respectively.


Asunto(s)
Acetilglucosamina/metabolismo , Escherichia coli , Glucosamina/metabolismo , Ingeniería Metabólica/métodos , Acetilglucosamina/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Glucosamina/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Redes y Vías Metabólicas/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...