Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Nature ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991538

RESUMEN

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5' splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.

2.
Environ Technol ; : 1-9, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962999

RESUMEN

Immobilisation of uranium (U (VI)) by direct precipitation of uranyl phosphate (U-P) exhibits a great potential application in the remediation of U (VI)-contaminated environments. However, phosphorus, vital element of bacteria's decomposition, absorption and transformationmay affect the stability of U (VI) with ageing time. The main purpose of this work is to study the effect of bacteria on uranium sequestration mechanism and stability by different forms of phosphorus in a water sedimentary system. The results showed that phosphate effectively enhanced the removal of U (VI), with 99.84%. X-Ray Diffraction (XRD), Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS), and X-ray Photoelectron Spectroscopy (XPS) analyses imply that U (VI) and U (IV) co-exist on the surface of the samples. Combined with BCR results, it demonstrated that bacteria and phosphorus have a synergistic effect on the removal of U (VI), realising the immobilisation of U (VI) from a transferable phase to a stable phase. However, from a long-term perspective, the redissolution and release of uranium immobilisation of U (VI) by pure bacteria with ageing time are worthy of attention, especially in uranium mining environments rich in sensitive substances. This observation implies that the stability of the uranium may be impacted by the prevailing environmental conditions. The novel findings could provide theoretical evidence for U (VI) bio-immobilisation in U (VI)-contaminated environments.

3.
Nat Commun ; 15(1): 4890, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849352

RESUMEN

The human brain has been implicated in the pathogenesis of several complex diseases. Taking advantage of single-cell techniques, genome-wide association studies (GWAS) have taken it a step further and revealed brain cell-type-specific functions for disease loci. However, genetic causal associations inferred by Mendelian randomization (MR) studies usually include all instrumental variables from GWAS, which hampers the understanding of cell-specific causality. Here, we developed an analytical framework, Cell-Stratified MR (csMR), to investigate cell-stratified causality through colocalizing GWAS signals with single-cell eQTL from different brain cells. By applying to obesity-related traits, our results demonstrate the cell-type-specific effects of GWAS variants on gene expression, and indicate the benefits of csMR to identify cell-type-specific causal effect that is often hidden from bulk analyses. We also found csMR valuable to reveal distinct causal pathways between different obesity indicators. These findings suggest the value of our approach to prioritize target cells for extending genetic causation studies.


Asunto(s)
Encéfalo , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Obesidad , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Obesidad/genética , Obesidad/metabolismo , Encéfalo/metabolismo , Análisis de la Célula Individual/métodos , Predisposición Genética a la Enfermedad/genética , Causalidad , Regulación de la Expresión Génica , Expresión Génica/genética
4.
Neurol Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902569

RESUMEN

OBJECTIVE: To describe the association between preoperative ictal scalp electroencephalogram (EEG) results and surgical outcomes in patients with focal epilepsies. METHODS: The data of consecutive patients with focal epilepsies who received surgical treatments at our center from January 2012 to December 2021 were retrospectively analyzed. RESULTS: Our data showed that 44.2% (322/729) of patients had ictal EEG recorded on video EEG monitoring during preoperative evaluation, of which 60.6% (195/322) had a concordant ictal EEG results. No significant difference of surgery outcomes between patients with and without ictal EEG was discovered. Among MRI-negative patients, those with concordant ictal EEG had a significantly better outcome than those without ictal EEG (75.7% vs. 43.8%, p = 0.024). Further logistic regression analysis showed that concordant ictal EEG was an independent predictor for a favorable outcome (OR = 4.430, 95%CI 1.175-16.694, p = 0.028). Among MRI-positive patients, those with extra-temporal lesions and discordant ictal EEG results had a worse outcome compared to those without an ictal EEG result (44.7% vs. 68.8%, p = 0.005). Further logistic regression analysis showed that discordant ictal EEG was an independent predictor of worse outcome (OR = 0.387, 95%CI 0.186-0.807, p = 0.011) in these patients. Furthermore, our data indicated that the number of seizures was not associated with the concordance rates of the ictal EEG, nor the surgical outcomes. CONCLUSIONS: The value of ictal scalp EEG for epilepsy surgery varies widely among patients. A concordant ictal EEG predicts a good surgical outcome in MRI-negative patients, whereas a discordant ictal EEG predicts a poor postoperative outcome in lesional extratemporal lobe epilepsy.

5.
Neurosci Bull ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703276

RESUMEN

Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.

6.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745302

RESUMEN

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Asunto(s)
Cisplatino , Regulación hacia Abajo , Resistencia a Antineoplásicos , MicroARNs , Neoplasias Ováricas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myb , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Resistencia a Antineoplásicos/genética , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
7.
Sci Rep ; 14(1): 11462, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769348

RESUMEN

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases. This method is applicable for any bipartite state and offers benefits even in scenarios with a high number of measurement settings. Using the Greenberger-Horne-Zeilinger state as an illustration, we show that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal measurements with unequal strength possess a greater activation capability compared to those with equal strength. Our activation method generates fresh concepts for conservation and recycling quantum resources.

8.
Am J Hum Genet ; 111(6): 1222-1238, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781976

RESUMEN

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Haploinsuficiencia , Mutación Missense , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Haploinsuficiencia/genética , Ácido gamma-Aminobutírico/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidades del Desarrollo/genética , Trastorno Autístico/genética , Células HEK293
9.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560106

RESUMEN

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

10.
Macromol Rapid Commun ; : e2400108, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639216

RESUMEN

Various acoustic materials are developed to resolve noise pollution problem in many industries. Especially, materials with porous structure are broadly used to absorb sound energy in civil construction and transportation area. Polyurethane (PU) porous materials possess excellent damping properties, good toughness, and well-developed pore structures, which have a broad application prospect in sound absorption field. This work aims to summarize the recent progress of fabrication and structure for PU porous materials in sound absorption application. The sound absorption mechanisms of porous materials are introduced. Different kinds of structure for typical PU porous materials in sound absorption application are covered and highlighted, which include PU foam, modified PU porous materials, aerogel, templated PU, and special PU porous materials. Finally, the development direction and existing problems of PU material in sound absorption application are briefly prospected. It can be expected that porous PU with high sound absorption coefficient can be obtained by using some facile methods. The design and accurate regulation of porous structures or construction of multilayer sound absorption structure is favorably recommended to fulfill the high demand of industrial and commercial applications in the future work.

12.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645094

RESUMEN

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.

13.
Biol Psychiatry ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432522

RESUMEN

BACKGROUND: Growing evidence indicates that dynamic changes in gut microbiome can affect intelligence; however, whether these relationships are causal remains elusive. We aimed to disentangle the poorly understood causal relationship between gut microbiota and intelligence. METHODS: We performed a 2-sample Mendelian randomization (MR) analysis using genetic variants from the largest available genome-wide association studies of gut microbiota (N = 18,340) and intelligence (N = 269,867). The inverse-variance weighted method was used to conduct the MR analyses complemented by a range of sensitivity analyses to validate the robustness of the results. Considering the close relationship between brain volume and intelligence, we applied 2-step MR to evaluate whether the identified effect was mediated by regulating brain volume (N = 47,316). RESULTS: We found a risk effect of the genus Oxalobacter on intelligence (odds ratio = 0.968 change in intelligence per standard deviation increase in taxa; 95% CI, 0.952-0.985; p = 1.88 × 10-4) and a protective effect of the genus Fusicatenibacter on intelligence (odds ratio = 1.053; 95% CI, 1.024-1.082; p = 3.03 × 10-4). The 2-step MR analysis further showed that the effect of genus Fusicatenibacter on intelligence was partially mediated by regulating brain volume, with a mediated proportion of 33.6% (95% CI, 6.8%-60.4%; p = .014). CONCLUSIONS: Our results provide causal evidence indicating the role of the microbiome in intelligence. Our findings may help reshape our understanding of the microbiota-gut-brain axis and development of novel intervention approaches for preventing cognitive impairment.

14.
Cell Genom ; 4(3): 100501, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38335956

RESUMEN

The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.


Asunto(s)
Osteoporosis , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Factores de Transcripción/genética , Osteoporosis/genética , Cromatina/genética , Regiones Promotoras Genéticas/genética
15.
Mol Neurobiol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409642

RESUMEN

After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.

16.
Nat Commun ; 15(1): 1409, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360850

RESUMEN

The synovium is an important component of any synovial joint and is the major target tissue of inflammatory arthritis. However, the multi-omics landscape of synovium required for functional inference is absent from large-scale resources. Here we integrate genomics with transcriptomics and chromatin accessibility features of human synovium in up to 245 arthritic patients, to characterize the landscape of genetic regulation on gene expression and the regulatory mechanisms mediating arthritic diseases predisposition. We identify 4765 independent primary and 616 secondary cis-expression quantitative trait loci (cis-eQTLs) in the synovium and find that the eQTLs with multiple independent signals have stronger effects and heritability than single independent eQTLs. Integration of genome-wide association studies (GWASs) and eQTLs identifies 84 arthritis related genes, revealing 38 novel genes which have not been reported by previous studies using eQTL data from the GTEx project or immune cells. We further develop a method called eQTac to identify variants that could affect gene expression by affecting chromatin accessibility and identify 1517 regions with potential regulatory function of chromatin accessibility. Altogether, our study provides a comprehensive synovium multi-omics resource for arthritic diseases and gains new insights into the regulation of gene expression.


Asunto(s)
Artritis , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad/genética , Regulación de la Expresión Génica , Cromatina/genética , Membrana Sinovial , Artritis/genética , Polimorfismo de Nucleótido Simple
17.
Int J Nurs Stud ; 151: 104676, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241817

RESUMEN

BACKGROUND: Central venous catheters are widely used in clinical practice, and the incidence of central venous catheter occlusion is between 25 % and 38 %. The turbulence caused by the pulsatile flushing technique is harmful to the vascular endothelium and may lead to phlebitis. The low-speed continuous infusion catheter technique is a new type of continuous infusion that ensures that the catheter is always in a keep-vein-open state by continuous low-speed flushing; hence, avoiding the problem of catheter occlusion. OBJECTIVE: To investigate the effectiveness of the low-speed continuous infusion catheter technique and the routine care of double-lumen central venous catheters. DESIGN: This was a prospective, randomized, controlled, open-label trial. SETTING: Patients were recruited from 14 medical institutions in China between February and June 2023. PARTICIPANTS: In total, 251 patients were recruited, with 125 in the intervention group and 126 in the control group. METHODS: Patients who used double-lumen central venous catheters for infusion treatment were selected, and those who met the sampling criteria were randomly divided into intervention and control groups using the random envelope method. The intervention group used the low-speed continuous infusion catheter technique to maintain catheter patency, whereas the control group used routine care with a trial period of 7 days. The primary outcome was the occlusion rate. The secondary outcomes included nursing satisfaction and complication rates of the two groups. RESULTS: After 7 days, the rate of catheter occlusion was 28.0 % (35/125, 95 % confidence interval (CI):0.203, 0.367) in the intervention group and 53.97 % (68/126, 95 % CI: 0.449-0.629) in the control group, with a statistically significant difference (χ2 = 17.488, p < 0.001); at 3 days of intervention, the rate of catheter blockage was 8.0 % (10/125, 95 % CI: 0.039-0.142) in the intervention group and 23.8 % (30/126, 0.167-0.322) in the control group, with a statistically significant difference (χ2 = 11.707, p < 0.001). Nurse satisfaction was significantly higher in the intervention group (115/125, 92.0 %, 95 % CI: 0.858-0.961) than in the control group (104/126, 82.54 %, 95 % CI: 0.748-0.887) (χ2 = 5.049, p = 0.025). There were no statistically significant complication rates in either group (p = 0.622). CONCLUSION: The low-speed continuous infusion catheter technique helps maintain catheter patency, improves nurse satisfaction, and provides a high level of safety. REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2200064007, www.chictr.org.cn). The first recruitment was conducted in February. https://www.chictr.org.cn/showproj.html?proj=177311.


Asunto(s)
Cateterismo Venoso Central , Catéteres Venosos Centrales , Flebitis , Humanos , Estudios Prospectivos , Cateterismo Venoso Central/efectos adversos , Incidencia
18.
Br J Neurosurg ; : 1-8, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37927066

RESUMEN

BACKGROUND: Corpus callosotomy is a palliative surgery for medically refractory epilepsy. We aim to analyze the clinical features of patients with seizure freedom and failure after total corpus callosotomy for childhood-onset refractory epilepsy. METHODS: We retrospectively reviewed the clinical courses of patients with childhood-onset refractory epilepsy undergoing total corpus callosotomy between May 2009 and March 2019. Seizure outcome at the last follow-up was the primary outcome. The clinical features of patients with seizure freedom and failure after callosotomy were compared. RESULTS: Eighty patients with childhood-onset refractory epilepsy underwent total corpus callosotomy; 15 (18.8%) obtained freedom from all seizures and 19 (23.8%) had unworthwhile improvement and failure. The mean ages at seizure onset in patients with seizure freedom and failure after callosotomy were 5.7 and 5.9 years; and mean seizure durations were 9.4 and 11.5 years, respectively. Univariate analysis found epilepsy syndrome (p = 0.047), mental retardation (p = 0.007), previous medical history (p = 0.004), ≥10 seizures per day (p = 0.024), theta waves in the background electroencephalogram (p = 0.024), and acute postoperative seizure (p = 0.000) were associated with failure after callosotomy. Seizure freedom after callosotomy was more common among patients with less than 10 seizures per day. CONCLUSIONS: Total corpus callosotomy is an effective palliative procedure for childhood-onset refractory epilepsy, particularly for patients with specific clinical characteristics. Callosotomy has a high seizure-free rate in well-selected patients.

19.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961354

RESUMEN

Missense variants that alter a single amino acid in the encoded protein contribute to many human disorders but pose a substantial challenge in interpretation. Though these variants can be reliably identified through sequencing, distinguishing the clinically significant ones remains difficult, such that "Variants of Unknown Significance" outnumber those classified as "Pathogenic" or "Likely Pathogenic." Numerous in silico approaches have been developed to predict the functional impact of missense variants to inform clinical interpretation, the latest being AlphaMissense, which uses artificial intelligence methods trained on predicted protein structure. To independently assess the performance of AlphaMissense and 38 other predictors of missense severity, we compared predictions to data from multiplexed assays of variant effect (MAVE). MAVE experiments generate almost every possible individual amino acid change in a gene and measure their functional impact using a high-throughput assay. Assessing 17,696 variants across five genes (DDX3X, MSH2, PTEN, KCNQ4, and BRCA1), we find that AlphaMissense is consistently one of the top five algorithms based on correlation with functional impact and is the best-correlated algorithm for two genes. We conclude that AlphaMissense represents the current best-in-class predictor by this metric; however, the improvement over other algorithms is modest. We note that multiple missense predictors, including AlphaMissense, appear to overcall variants as pathogenic despite minimal functional impact and that substantially more high-quality training data, including consistently analyzed patient cohorts and MAVE analyses, are required to improve accuracy.

20.
Biomed Pharmacother ; 168: 115688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890205

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that is characterized by high blood sugar levels that occur due to insulin resistance and dysfunction in glucose metabolism during pregnancy. It usually develops in the second or third trimester of pregnancy and affects about 7 % of all pregnancies worldwide. In this experimental study, we scrutinized the GDM protective effect of soy isolate protein against streptozotocin (STZ) induced GDM in rats and explore the underlying mechanism. MATERIAL AND METHODS: Sprague-Dawley (SD) rats were used in this experimental study. A 55 mg/kg intraperitoneal injection of streptozotocin (STZ) was administered to induce diabetes in female rats, followed by oral administration of soy isolate protein for 18 days. Body weight, glucose levels, and insulin were measured at different time intervals (0, 9, and 18 days). Lipid profiles, antioxidant levels, inflammatory cytokines, apoptosis parameters, and mRNA expression were also assessed. Pancreatic and liver tissues were collected for histopathological examination during the experimental study. RESULTS: Soy isolate protein significantly (P < 0.001) reduced the glucose level and enhanced the insulin level and body weight. Soy isolate protein remarkably decreased the placental weight and increased the fetal weight. Soy isolate protein significantly (P < 0.001) decreased the HbA1c, hepatic glycogen, serum C-peptide and increased the level of free fatty acid. Soy isolate protein significantly (P < 0.001) altered the level of lipid, antioxidant and inflammatory cytokines. Soy isolate protein significantly (P < 0.001) improved the level of adiponectin, visfatin and suppressed the level of leptin and ICAM-1. Soy isolate protein significantly (P < 0.001) altered the mRNA expression and also restored the alteration of histopathology. CONCLUSION: Based on the result, soy isolate protein exhibited the GDM protective effect against the STZ induced GDM in rats via alteration of TLR4/MyD88/NF-κB signaling pathway.


Asunto(s)
Diabetes Gestacional , Animales , Femenino , Embarazo , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glucemia/metabolismo , Peso Corporal , Citocinas/metabolismo , Diabetes Gestacional/prevención & control , Glucosa/metabolismo , Insulina/metabolismo , Lípidos/sangre , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Placenta/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Transducción de Señal , Estreptozocina/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...