Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675349

RESUMEN

Retroreflective gratings serve as fundamental optical elements in nanophotonics, with polarization-independent diffraction efficiency being one of the critical parameters for assessing their performance. In the far-infrared spectral range, traditional retroreflective gratings typically refer to metal echelette gratings, but their diffraction efficiency cannot approach 100% due to metal absorption. In the visible and near-infrared spectral ranges, metal echelette gratings have gradually been replaced by all-dielectric metasurfaces because dielectric materials exhibit negligible absorption at specific wavelengths. However, there is still a lack of relevant research in the far-infrared range, mainly due to the weak control capability of the existing devices over the polarization-independent phase. Here, we propose a kind of all-dielectric retroreflective metasurface composed of asymmetric pillars and freely tunable aperiodic multilayer films. The pillar structure can achieve polarization insensitivity, and the insufficient modulation capability of the dielectric materials can be compensated for by aperiodic Ge/ZnS films. The designed metasurface achieves the diffraction efficiency by RCWA, with the maximum larger than 99% and the overall reaching 95% (9.3-9.6 µm). We have provided detailed explanations of the design methodology and fabrication process. Our work lays the groundwork for further exploration and application of far-infrared lasers.

2.
Adv Sci (Weinh) ; : e2400150, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552159

RESUMEN

Perovskite single crystals have attracted tremendous attention owing to their excellent optoelectronic properties and stability compared to typical multicrystal structures. However, the growth of high-quality perovskite single crystals (PSCs) generally relies on temperature gradients or the introduction of additives to promote crystal growth. In this study, a vacuum evaporation crystallization technique is developed that allows PSCs to be grown under extremely stable conditions at constant temperature and without requiring additives to promote crystal growth. The new method enables the growth of PSCs of unprecedented quality, that is, MAPbBr3 single crystals that exhibit an ultranarrow full width at half maximum of 0.00701°, which surpasses that of all previously reported values. In addition, the MAPbBr3 single crystals deliver exceptional optoelectronic performance, including a long carrier lifetime of 1006 ns, an ultralow trap-state density of 3.67 × 109 cm-3, and an ultrahigh carrier mobility of 185.86 cm2 V-1 s-1. This method is applicable to various types of PSCs, including organic-inorganic hybrids, fully inorganic structures, and low-dimensional structures.

3.
Neurobiol Dis ; 193: 106458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423194

RESUMEN

BACKGROUND: Several studies have identified an association between the gut microbiome and post-stroke depression(PSD), and Helicobacter pylori(H. pylori) infection cause significant alterations in the composition of the gastrointestinal microbiome. However, evidence regarding the role of the H. pylori infection in promoting PSD is still lacking. Here, we conducted a retrospective study to explore risk factors associated with PSD. METHODS: Patients with cerebral infarction were consecutively enrolled from December 2021 to October 2022. The diagnosis of PSD is based on the DSM-V criteria, and the Hamilton Depression Rating Scale(HAMD) was used to identify patients with PSD. White matter lesions were evaluated using magnetic resonance imaging(MRI) and H. pylori infection was detected by 13C-urea breath test. Further, 16S rRNA gene sequencing was used to evaluate the changes in gut microbiota composition of fecal samples from PSD patients. The concentration of short-chain fatty acids(SCFAs) was determined by gas chromatography-mass spectrometry(GC-MS). RESULTS: Multivariate regression analysis showed that deep white matter lesions(DWMLs) [odds ratio(OR) 3.382, 95% confidence interval(CI) 1.756-6.512; P = 0.001] and H. pylori infection(OR 2.186, 95% CI 1.149-4.159; P = 0.017) were the independent risk factors for PSD. Patients with H. pylori infection had more severe depressive symptoms than patients without infection. Intestinal microbiota was significantly different between H. pylori-positive PSD[H. pylori(+)] patients and H. pylori-negative PSD[H. pylori (-)] patients. Fecal SCFAs concentrations were significantly reduced in the H. pylori(+) group compared to the negative ones. CONCLUSION: DWMLs and H. pylori infection may play important roles in the development of PSD. H. pylori infection is likely to be involved in the pathogenesis of PSD by altering the intestinal flora.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Accidente Cerebrovascular , Humanos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/patología , Microbioma Gastrointestinal/genética , Helicobacter pylori/genética , Estudios Retrospectivos , ARN Ribosómico 16S/genética , Depresión/etiología , Accidente Cerebrovascular/complicaciones
4.
J Sci Food Agric ; 104(6): 3329-3340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38082555

RESUMEN

BACKGROUND: Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS: Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION: These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Zanthoxylum , Inhibidores de la Enzima Convertidora de Angiotensina/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Semillas/metabolismo , Subtilisinas/química
5.
Opt Express ; 31(25): 41339-41350, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087535

RESUMEN

Multilayer metagratings have strong wavefront manipulation capabilities and find important applications in beam splitters. Traditional methods rely on the phase gradient design of generalized Snell's law, which can achieve highly efficient beam splitters with uniform energy distribution. However, designing arbitrary energy distributions in different channels under two orthogonal polarizations remains a challenge because it requires more complex structures to modulate the energy flow. In this work, we employed a hybrid evolutionary particle swarm optimization (HEPSO) from the combination of particle swarm optimization (PSO) and genetic algorithm (GA) which has a strong ability to find the optimal structures that satisfy the specific energy flow distributions. We used the crossover and mutation operators of GA to improve the global search capabilities, and the velocity updating formula of PSO to replace the selection operator of GA to avoid local optimization. Using this approach, we successfully designed a uniform beam splitter with an efficiency of over 90% and two beam splitters with arbitrary energy distributions, achieving an average error of about 0.5%. The optimal and average efficiencies obtained from running 10 optimizations are 2.2% and 4% higher than those obtained using PSO alone with 30 populations and 75 iterations. We envision that the proposed method can also provide an idea for other photonics design problems.

6.
Nano Lett ; 23(23): 11252-11259, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37948605

RESUMEN

Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.

7.
Nanomaterials (Basel) ; 13(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836265

RESUMEN

On-chip multi-dimensional detection systems integrating pixelated polarization and spectral filter arrays are the latest trend in optical detection instruments, showing broad application potential for diagnostic medical imaging and remote sensing. However, thin-film or microstructure-based filter arrays typically have a trade-off between the detection dimension, optical efficiency, and spectral resolution. Here, we demonstrate novel on-chip integrated polarization spectral detection filter arrays consisting of metasurfaces and multilayer films. The metasurfaces with two nanopillars in one supercell are designed to modulate the Jones matrix for polarization selection. The angle of diffraction of the metasurfaces and the optical Fabry-Perot (FP) cavities determine the spectrum's center wavelength. The polarization spectral filter arrays are placed on top of the CMOS sensor; each array corresponds to one pixel, resulting in high spectral resolution and optical efficiency in the selected polarization state. To verify the methodology, we designed nine-channel polarized spectral filter arrays in a wavelength range of 1350 nm to 1550 nm for transverse electric (TE) linear polarization. The array has a 10 nm balanced spectral resolution and average peak transmission efficiency of over 75%, which is maintained by utilizing lossless dielectric material. The proposed array can be fabricated using overlay e-beam lithography, and the process is CMOS-compatible. The proposed array enables broader applications of in situ on-chip polarization spectral detection with high efficiency and spectral resolution, as well as in vivo imaging systems.

8.
Adv Mater ; 35(52): e2306102, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37669761

RESUMEN

Great research efforts are devoted to exploring the miniaturization of chip-scale coherent light sources possessing excellent lasing performance. Despite the indispensable role in Si photonics, SiO2 is generally considered not contributing to the starting up and operation of integrated lasers. Here, this work demonstrates an extraordinary-performance subwavelength-scale perovskite vertical cavity laser with all-transparent SiO2 cavity, whose cavity is ultra-simple and composed of only two parallel SiO2 plates. By introducing a ligand-assisted thermally co-evaporation strategy, highly luminescent perovskite film with high reproducibility and excellent optical gain is grown directly on SiO2 . Benefitting from their high-refractive-index contrast, low-threshold, high-quality factor, and single-mode lasing is achieved in subwavelength range of ≈120 nm, and verified by long-range coherence distance (115.6 µm) and high linear polarization degree (82%). More importantly, the subwavelength perovskite laser device could operate in water for 20 days without any observable degradation, exhibiting ultra-stable water-resistant performance. These findings would provide a simple but robust and reliable strategy for the miniaturized on-chip lasers compatible with Si photonics.

9.
J Phys Chem Lett ; 14(35): 7903-7909, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37643347

RESUMEN

Miniaturized coherent light sources on the nanoscale are highly desired for on-chip photonics integration. However, when approaching the diffraction limit, the sub-wavelength-scale all-dielectric lasers are difficult to realize due to the trade-off between lasing performance and physical size. Especially for a thin-film laser, usually an externally complex cavity is required to provide the necessary optical feedback. Herein, we successfully shrink the MAPbBr3 perovskite thin-film laser to sub-wavelength scale (300 nm) with simplified cavity design using only an ultraviolet glue layer and a quartz glass. The morphology quality and the gain properties of the film are enhanced by introducing ionic liquid. Consequently, the stable and low-threshold single-mode laser with a highly linear polarization degree of 78.6% and a narrow line width of 0.35 nm is achieved under two-photon excitation. The excellent single-mode laser with sub-wavelength scale and ultrasimplified structure could provide a facile and versatile platform for future integrated optoelectronic devices.

10.
Opt Express ; 31(9): 14027-14036, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157275

RESUMEN

Pixelated filter arrays of Fabry-Perot (FP) cavities are widely integrated with photodetectors to achieve a WYSIWYG ("what you see is what you get") on-chip spectral measurements. However, FP-filter-based spectral sensors typically have a trade-off between their spectral resolution and working bandwidth due to design limitations of conventional metal or dielectric multilayer microcavities. Here, we propose a new idea of integrated color filter arrays (CFAs) consisting of multilayer metal-dielectric-mirror FP microcavities that, enable a hyperspectral resolution over an extended visible bandwidth (∼300 nm). By introducing another two dielectric layers on the metallic film, the broadband reflectance of the FP-cavity mirror was greatly enhanced, accompanied by as-flat-as-possible reflection-phase dispersion. This resulted in balanced spectral resolution (∼10 nm) and spectral bandwidth from 450 nm to 750 nm. In the experiment, we used a one-step rapid manufacturing process by using grayscale e-beam lithography. A 16-channel (4 × 4) CFA was fabricated and demonstrated on-chip spectral imaging with a CMOS sensor and an impressive identification capability. Our results provide an attractive method for developing high-performance spectral sensors and have potential commercial applications by extending the utility of low-cost manufacturing process.

11.
Appl Opt ; 62(7): B19-B24, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132882

RESUMEN

Diffractive optical elements (DOEs) play an important role in modern optical applications such as spectral and imaging systems, but it is challenging to balance the diffraction efficiency with the working bandwidth. The core issue is controlling the broadband dispersion of all phase units to achieve achromatic 2π-phase modulation in the broadband domain. Here, we demonstrate broadband DOEs utilizing multilayer subwavelength structures with different materials, making it possible to freely control the phase and phase dispersion of the structural units on a much larger scale than monolayer structures. The desired dispersion-control abilities arose due to a dispersion-cooperation mechanism and vertical mode-coupling effects between the top and bottom layers. An infrared design comprised of two vertically concatenated T i O 2 and Si nanoantennas separated by a S i O 2 dielectric spacer layer was demonstrated. It showed an average efficiency of over 70% in the three-octave bandwidth. This work shows enormous value for broadband optical systems with DOEs such as spectral imaging and augmented reality.

12.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049327

RESUMEN

Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human's pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end.

13.
Front Pharmacol ; 13: 1084435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518663

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is a nutritional metabolic disease. Artemisia capillaris (AC) is the above-ground dried part of Artemisia capillaris Thunb. or Artemisia scoparia Waldst. et Kit., a natural medicinal plant with pharmacological effects of heat-clearing and biliary-promoting. In order to evaluate the therapeutic effect of Artemisia capillaris on NAFLD and obesity, experiments were conducted using aqueous extracts of Artemisia capillaris (WAC) to intervene in NAFLD models in vivo and in vitro. In vivo experiments were performed using HFD-fed (high fat diet) C57BL/6 mice to induce NAFLD model, and in vitro experiments were performed using oleic acid to induce HepG2 cells to construct NAFLD cell model. H.E. staining and oil red O staining of liver tissue were used to observe hepatocytes. Blood biochemistry analyzer was used to detect serum lipid levels in mice. The drug targets and mechanism of action of AC to improve NAFLD were investigated by western blotting, qRT-PCR and immunofluorescence. The results showed that C57BL/6 mice fed HFD continuously for 16 weeks met the criteria for NAFLD in terms of lipid index and hepatocyte fat accumulation. WAC was able to reverse the elevation of serum lipid levels induced by high-fat diet in mice. WAC promoted the phosphorylation levels of PI3K/AKT and AMPK in liver and HepG2 cells of NAFLD mice, inhibited SREBP-1c expression, reduced TG and lipogenesis, and decreased lipid accumulation. In summary, WAC extract activates PI3K/AKT pathway, reduces SREBP-1c protein expression by promoting AMPK phosphorylation, and decreases fatty acid synthesis and TG content in hepatocytes. AC can be used as a potential health herb to improve NAFLD and obesity.

14.
Opt Express ; 30(14): 25907-25917, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237110

RESUMEN

Guided-mode resonance (GMR) bandpass filters have many important applications. The tolerance of fabrication errors that easily cause the transmission wavelength to shift has been well studied for one-dimensional (1D) anisotropic GMR gratings. However, the tolerance of two-dimensional (2D) GMR gratings, especially for different design architectures, has rarely been explored, which prevents the achievement of a high-tolerance unpolarized design. Here, GMR filters with common 2D zero-contrast gratings (ZCGs) were first investigated to reveal their differences from 1D gratings in fabrication tolerance. We demonstrated that 2D ZCGs are highly sensitive to errors in the grating linewidth against the case of 1D gratings, and the linewidth orthogonal to a certain polarization direction has much more influence than that parallel to the polarization. By analyzing the electromagnetic fields, we found that there was an obvious field enhancement inside the gratings, which could have a strong effect on the modes in the waveguide layer through the field overlap. Therefore, we proposed the introduction of an etch-stop (ES) layer between the gratings and the waveguide-layer, which can effectively suppress the interaction between the gratings and modal evanescent fields, resulting in 4-fold increased tolerance to the errors in the grating linewidth. Finally, the proposed etch-stop ZCGs (ES-ZCGs) GMR filters were experimentally fabricated to verify the error robustness.

15.
Life Sci ; 301: 120634, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568228

RESUMEN

AIMS: Due to the prevalence of high-fat diets and lack of exercise, diseases related to nutrient metabolism such as nonalcoholic fatty liver disease (NAFLD) have become one of the reasons causes endangering human liver health. Maslinic acid (MA) is a pentacyclic triterpenoid acid that is abundant in fruits such as hawthorn and jujube. In this study, we investigated the effect of MA on NAFLD to inform the development of dietary supplements for the treatment and prevention of NAFLD. MATERIALS AND METHODS: The NAFLD model was established by feeding mice a high-fat diet (HFD). HEPG2 cells were treated with oleic acid and used as a cell culture model. Testing kits, haematoxylin and eosin staining, oil red O staining, western blotting, and immunofluorescence were performed with in vivo and in vitro experiments. KEY FINDINGS: The current study revealed that MA significantly reduced liver weight, body weight and serum lipid levels, and protected against liver steatosis and injury induced by a HFD. MA increased the expression of Beclin1, ATG1, and Bcl-2 mRNA and protein while decreasing the expression of TNF-α and IL-1ß, caspase-3 and Bax mRNA and protein. Beclin1, and ATG1 were obviously increased, and the mRNA and protein expression of TNF-α and IL-1ß were obviously reduced, the mRNA and protein expression of Caspase-3 and Bax were obviously reduced, and the mRNA and protein expression of Bax were obviously increased by MA. SIGNIFICANCE: MA reduces the content of fat in the liver cells of NAFLD mice through lipophagy activitiy and reduces inflammation and apoptosis injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad del Hígado Graso no Alcohólico , Triterpenos , Animales , Beclina-1/metabolismo , Caspasa 3/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , ARN Mensajero/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
16.
Micromachines (Basel) ; 13(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457911

RESUMEN

Depth imaging is very important for many emerging technologies, such as artificial intelligence, driverless vehicles and facial recognition. However, all these applications demand compact and low-power systems that are beyond the capabilities of most state-of-art depth cameras. Recently, metasurface-based depth imaging that exploits point spread function (PSF) engineering has been demonstrated to be miniaturized and single shot without requiring active illumination or multiple viewpoint exposures. A pair of spatially adjacent metalenses with an extended depth-of-field (EDOF) PSF and a depth-sensitive double-helix PSF (DH-PSF) were used, using the former metalens to reconstruct clear images of each depth and the latter to accurately estimate depth. However, due to these two metalenses being non-coaxial, parallax in capturing scenes is inevitable, which would limit the depth precision and field of view. In this work, a bifunctional reconfigurable metalens for 3D depth imaging was proposed by dynamically switching between EDOF-PSF and DH-PSF. Specifically, a polarization-independent metalens working at 1550 nm with a compact 1 mm2 aperture was realized, which can generate a focused accelerating beam and a focused rotating beam at the phase transition of crystalline and amorphous Ge2Sb2Te5 (GST), respectively. Combined with the deconvolution algorithm, we demonstrated the good capabilities of scene reconstruction and depth imaging using a theoretical simulation and achieved a depth measurement error of only 3.42%.

17.
Brain Res Bull ; 183: 84-93, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245613

RESUMEN

Parkinson's disease (PD) is the second most common degenerative disease of the central nervous system (CNS) after Alzheimer's disease. In addition to the typical motor symptoms, the clinical manifestations of patients with PD include gastrointestinal symptoms, which even precede the motor symptoms. Recent research has found that the gut microbiota regulates the brain-gut axial interaction through immune, endocrine, and direct neural mechanisms, supporting the hypothesis that the pathological process of PD spreads from the gut to the brain. In this review article, we highlight the landmark findings in the field of PD, with particular attention to the brain-gut-microbiota axis. We summarize the changes and their clinical effects on the gut microbiota and metabolites observed in PD. The intestinal microbiota may contain appropriate targets for the prevention and treatment of PD. Clinical cohort studies suggest that certain intestinal microbes have protective or pathogenic effects on the progression of PD. A better understanding of the interaction between the gut-brain axis, the gut microbiota, and PD has the potential to lead to new diagnostic and therapeutic approaches. Animal experiments suggest that fecal microbiota transplantation (FMT) is helpful for treating PD, and FMT is expected to be an effective treatment for PD in the future.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Eje Cerebro-Intestino , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Humanos , Enfermedad de Parkinson/metabolismo
18.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201580

RESUMEN

Hybrid organic-inorganic perovskite shows a great potential in the field of photoelectrics. Embedding methyl ammonium lead bromide (MAPbBr3) in a mesoporous silica (mSiO2) layer is an effective method for maintaining optical performance of MAPbBr3 at room temperature. In this work, we synthesized MAPbBr3 quantum dots, embedding them in the mSiO2 layer. The nonlinear optical responses of this composite thin film have been investigated by using the Z-scan technique at a wavelength of 800 nm. The results show plural nonlinear responses in different intensities, corresponding to one- and two-photon processing. Our results support that composites possess saturation intensity of ~27.29 GW/cm2 and varying nonlinear coefficients. The composite thin films show high stability under ultrafast laser irradiating. By employing the composite as a saturable absorber, a passively Q-switching laser has been achieved on a Nd:YVO4 all-solid-state laser platform to generate a laser at ~1 µm.

19.
Light Sci Appl ; 8: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675346

RESUMEN

With the ever-increasing laser power and repetition rate, thermal control of laser media is becoming increasingly important. Except for widely used air cooling or a bonded heat sink, water cooling of a laser medium is more effective in removing waste heat. However, how to protect deliquescent laser media from water erosion is a challenging issue. Here, novel waterproof coatings were proposed to shield Nd:Glass from water erosion. After clarifying the dependence of the waterproof property of single layers on their microstructures and pore characteristics, nanocomposites that dope SiO2 in HfO2 were synthesized using an ion-assisted co-evaporation process to solve the issue of a lack of a high-index material that simultaneously has a dense amorphous microstructure and wide bandgap. Hf0.7Si0.3O2/SiO2 multifunctional coatings were finally shown to possess an excellent waterproof property, high laser-induced damage threshold (LIDT) and good spectral performance, which can be used as the enabling components for thermal control in high-power laser cavities.

20.
Dermatol Ther ; 32(4): e12802, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30536730

RESUMEN

OBJECTIVE: To explore the inhibition of the proliferation of vulvar squamous cell carcinoma (VSCC) by astragaloside IV. METHODS: MTT examined the cell proliferation of VSCC. Flow cytometry analyzed cell cycle and apoptosis. Western blot assay detected the expression of some relevant proteins. RESULTS: AS-IV reduced the proliferation of SW962 cells in a concentration- and time-dependent manner, induced cell-cycle arresting in G0/G1 phase, as demonstrated by the up-regulation of P53 and P21 expression, and the down-regulation of cyclin D1 expression. AS-IV enhanced the expression of Bax and cleaved-caspase 3, and suppressed Bcl-2 and Bcl-xl expression, which resulted in apoptosis increased. Furthermore, the expression of Beclin-1 and LC3-B was upregulated and that of P62 was downregulated, which suggested that AS-IV could increase the incidence of autophagy in SW962 cells. After inhibiting autophagy by 3-methyladenine (3-MA), cell apoptosis decreased upon AS-IV treatment. Similarly, TGF-ß1 stimulated SW962 cells, cell proliferation enhanced, and the expression of TGF-ßRII and Smad4 was decreased. Furthermore, the expression of proteins that promote apoptosis and autophagy decreased. After AS-IV treatment, the expression levels of the above proteins exhibited the opposite effect. CONCLUSION: AS-IV inhibits cell proliferation and induces apoptosis and autophagy through the TGF-ß/Smad signaling pathway in VSCC.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Saponinas/farmacología , Proteínas Smad/fisiología , Factor de Crecimiento Transformador beta/fisiología , Triterpenos/farmacología , Neoplasias de la Vulva/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Triterpenos/uso terapéutico , Neoplasias de la Vulva/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...