Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
New Phytol ; 242(2): 576-591, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362937

RESUMEN

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.


Asunto(s)
Reconocimiento de Inmunidad Innata , Nicotiana , Nicotiana/genética , Leucina , Plantas , Inmunidad de la Planta , Muerte Celular , Enfermedades de las Plantas/genética
3.
Mol Plant Pathol ; 24(12): 1510-1521, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37731193

RESUMEN

The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.


Asunto(s)
Antiinfecciosos , Bacillus , Bacillus/genética , Bacillus/metabolismo , Antiinfecciosos/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus subtilis
4.
New Phytol ; 240(4): 1467-1483, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37658678

RESUMEN

The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme del ARN/genética , Exones/genética , Inmunidad de la Planta/genética , Empalme Alternativo/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
New Phytol ; 240(2): 784-801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615219

RESUMEN

The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Phytophthora , Animales , Nicotiana/genética , Leucina , Inmunidad Innata , Mamíferos
6.
Nat Commun ; 14(1): 4877, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573360

RESUMEN

Extracellular vesicles (EVs) are important for cell-to-cell communication in animals. EVs also play important roles in plant-microbe interactions, but the underlying mechanisms remain elusive. Here, proteomic analyses of EVs from the soybean (Glycine max) root rot pathogen Phytophthora sojae identify the tetraspanin family proteins PsTET1 and PsTET3, which are recognized by Nicotiana benthamiana to trigger plant immune responses. Both proteins are required for the full virulence of P. sojae. The large extracellular loop (EC2) of PsTET3 is the key region recognized by N. benthamiana and soybean cells in a plant receptor-like kinase NbSERK3a/b dependent manner. TET proteins from oomycete and fungal plant pathogens are recognized by N. benthamiana thus inducing immune responses, whereas plant-derived TET proteins are not due to the sequence divergence of sixteen amino acids at the C-terminal of EC2. This feature allows plants to distinguish self and non-self EVs to trigger active defense responses against pathogenic eukaryotes.


Asunto(s)
Vesículas Extracelulares , Phytophthora , Proteómica , Phytophthora/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virulencia , Vesículas Extracelulares/metabolismo , Glycine max/metabolismo , Enfermedades de las Plantas/microbiología
7.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399403

RESUMEN

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Asunto(s)
Proteínas de Arabidopsis , Inmunidad de la Planta , Inmunidad de la Planta/genética , Ciclopentanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
8.
J Integr Plant Biol ; 65(9): 2204-2217, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37171031

RESUMEN

Plants can be infected by multiple pathogens concurrently in natural systems. However, pathogen-pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae-soybean-Fusarium combinations, more than 80% aggravated disease. Different Fusarium species all enhanced P. sojae infection when co-inoculated on soybean. Treatment with Fusarium secreted non-proteinaceous metabolites had an effect equal to the direct pathogen co-inoculation. By screening a Fusarium graminearum mutant library, we identified Fusarium promoting factor of Phytophthora sojae infection 1 (Fpp1), encoding a zinc alcohol dehydrogenase. Fpp1 is functionally conserved in Fusarium and contributes to metabolite-mediated infection promotion, in which vitamin B6 (VB6) produced by Fusarium is key. Transcriptional and functional analyses revealed that Fpp1 regulates two VB6 metabolism genes, and VB6 suppresses expression of soybean disease resistance-related genes. These results reveal that co-infection with Fusarium promotes loss of P. sojae resistance in soybean, information that will inform the sustainable use of disease-resistant crop varieties and provide new strategies to control soybean root rot.


Asunto(s)
Fusarium , Phytophthora , Glycine max/metabolismo , Vitamina B 6/metabolismo , Phytophthora/fisiología , Resistencia a la Enfermedad/genética , Vitaminas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
9.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083862

RESUMEN

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Asunto(s)
Ecosistema , Phytophthora infestans , Phytophthora infestans/genética , Agrobacterium tumefaciens/genética , Virulencia/genética , Mutación
10.
Mol Plant Pathol ; 24(4): 346-358, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36748674

RESUMEN

Plant pathogens secrete effector proteins to overcome host immunity and promote colonization. In oomycete plant pathogens, the expression of many effector genes is altered upon infection; however, the regulatory mechanisms are unclear. In this study, we identified a su(var)3-9, enhancer of zeste, and trithorax (SET) domain protein-encoding gene, PsKMT3, that was highly induced at early infection stages in Phytophthora sojae. Deletion of PsKMT3 led to asexual development and pathogenicity defects. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and western blot analyses demonstrated that histone H3K36 trimethylation (H3K36me3) was significantly reduced genome-wide in mutants. RNA-seq analysis identified 374 genes encoding secreted proteins that were differentially expressed in pskmt3 at the mycelium stage. The significantly altered genes encompassed the RxLR (Arg-x-Lys-Arg) effector gene family, including the essential effector genes Avh23, Avh181, Avh240, and Avh241. Transcriptome analysis at early infection stages showed misregulation of effector gene expression waves in pskmt3. H3K36me3 was directly and indirectly associated with RxLR effector gene activation. Our results reveal a role of a SET domain protein in regulating effector gene expression and modulating histone methylation in P. sojae.


Asunto(s)
Phytophthora , Histonas/metabolismo , Glycine max , Secuencia de Aminoácidos , Dominios PR-SET , Plantas/genética , Expresión Génica , Enfermedades de las Plantas
11.
Microbiol Spectr ; : e0003823, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809029

RESUMEN

The genus Bacillus is one of the most important genera for the biological control of plant diseases that are caused by various phytopathogens. The endophytic Bacillus strain DMW1 was isolated from the inner tissues of potato tubers and exhibited strong biocontrol activity. Based on its whole-genome sequence, DMW1 belongs to the Bacillus velezensis species, and it is similar to the model strain B. velezensis FZB42. 12 secondary metabolite biosynthetic gene clusters (BGCs), including two unknown function BGCs, were detected in the DMW1 genome. The strain was shown to be genetically amenable, and seven secondary metabolites acting antagonistically against plant pathogens were identified by a combined genetic and chemical approach. Strain DMW1 did significantly improve the growth of tomato and soybean seedlings, and it was able to control the Phytophthora sojae and Ralstonia solanacearum that were present in the plant seedlings. Due to these properties, the endophytic strain DMW1 appears to be a promising candidate for comparative investigations performed together with the Gram-positive model rhizobacterium FZB42, which is only able to colonize the rhizoplane. IMPORTANCE Phytopathogens are responsible for the wide spread of plant diseases as well as for great losses of crop yields. At present, the strategies used to control plant disease, including the development of resistant cultivars and chemical control, may become ineffective due to the adaptive evolution of pathogens. Therefore, the use of beneficial microorganisms to deal with plant diseases attracts great attention. In the present study, a new strain DMW1, belonging to the species B. velezensis, was discovered with outstanding biocontrol properties. It showed plant growth promotion and disease control abilities that are comparable with those of B. velezensis FZB42 under greenhouse conditions. According to a genomic analysis and a bioactive metabolites analysis, genes that are responsible for promoting plant growth were detected, and metabolites with different antagonistic activities were identified. Our data provide a basis for DMW1 to be further developed and applied as a biopesticide, which is similar to the closely related model strain FZB42.

12.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36625683

RESUMEN

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Asunto(s)
Phytophthora , Solanum , Proteínas/metabolismo , Plantas/metabolismo , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/metabolismo , Solanum/metabolismo , Enfermedades de las Plantas
13.
Plant Cell ; 35(1): 574-597, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222564

RESUMEN

Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.


Asunto(s)
Phytophthora , Inmunidad de la Planta , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Interacciones Huésped-Patógeno/genética
14.
Mol Plant ; 15(7): 1211-1226, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35733345

RESUMEN

Potato (Solanum tuberosum) is the most consumed non-cereal food crop. Most commercial potato cultivars are autotetraploids with highly heterozygous genomes, severely hampering genetic analyses and improvement. By leveraging the state-of-the-art sequencing technologies and polyploid graph binning, we achieved a chromosome-scale, haplotype-resolved genome assembly of a cultivated potato, Cooperation-88 (C88). Intra-haplotype comparative analyses revealed extensive sequence and expression differences in this tetraploid genome. We identified haplotype-specific pericentromeres on chromosomes, suggesting a distinct evolutionary trajectory of potato homologous centromeres. Furthermore, we detected double reduction events that are unevenly distributed on haplotypes in 1021 of 1034 selfing progeny, a feature of autopolyploid inheritance. By distinguishing maternal and paternal haplotype sets in C88, we simulated the origin of heterosis in cultivated tetraploid with a survey of 3110 tetra-allelic loci with deleterious mutations, which were masked in the heterozygous condition by two parents. This study provides insights into the genomic architecture of autopolyploids and will guide their breeding.


Asunto(s)
Solanum tuberosum , Haplotipos , Fitomejoramiento , Poliploidía , Solanum tuberosum/genética , Tetraploidía
15.
Mol Plant Microbe Interact ; 35(4): 301-310, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35037783

RESUMEN

Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Phytophthora , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Phytophthora/genética , Factores de Transcripción/genética
16.
Stress Biol ; 2(1): 34, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37676360

RESUMEN

Alternative splicing (AS) regulation of pre-mRNA has been proven to be one of the fundamental layers of plant immune system. How pathogens disrupt plant AS process to suppress plant immunity by secreted effectors remain poorly understood. In the recent study, Gui et al. revealed that a previously identified effector PSR1 of Phytophthora interferes with host RNA splicing machinery to modulate small RNA biogenesis, leading to compromised plant immunity. The study provided a novel insight into the importance of AS process during pathogen-host interactions.

18.
Plant Physiol ; 187(1): 321-335, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618132

RESUMEN

Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the ß-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.


Asunto(s)
Carbohidrato Epimerasas/genética , Proteínas Fúngicas/genética , Phytophthora/fisiología , Azúcares/metabolismo , Transporte Biológico , Carbohidrato Epimerasas/metabolismo , Proteínas Fúngicas/metabolismo , Mutación , Phytophthora/enzimología , Phytophthora/genética
19.
PLoS Pathog ; 17(10): e1010001, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648596

RESUMEN

Sexual reproduction is an essential stage of the oomycete life cycle. However, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. The notorious oomycete pathogen Pythium ultimum is responsible for a variety of diseases in a broad range of plant species. In this study, we revealed the mechanism through which PuM90, a stage-specific Puf family RNA-binding protein, regulates oospore formation in P. ultimum. We developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium. PuM90-knockout mutants were significantly defective in oospore formation, with empty oogonia or oospores larger in size with thinner oospore walls compared with the wild type. A tripartite recognition motif (TRM) in the Puf domain of PuM90 could specifically bind to a UGUACAUA motif in the mRNA 3' untranslated region (UTR) of PuFLP, which encodes a flavodoxin-like protein, and thereby repress PuFLP mRNA level to facilitate oospore formation. Phenotypes similar to PuM90-knockout mutants were observed with overexpression of PuFLP, mutation of key amino acids in the TRM of PuM90, or mutation of the 3'-UTR binding site in PuFLP. The results demonstrated that a specific interaction of the RNA-binding protein PuM90 with the 3'-UTR of PuFLP mRNA at the post-transcriptional regulation level is critical for the sexual reproduction of P. ultimum.


Asunto(s)
Pythium/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Enfermedades de las Plantas/microbiología , Reproducción
20.
Front Plant Sci ; 12: 685189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178005

RESUMEN

The remodeling of transcriptome, epigenome, proteome, and metabolome in hybrids plays an important role in heterosis. N(6)-methyladenosine (m6A) methylation is the most abundant type of post-transcriptional modification for mRNAs, but the pattern of inheritance from parents to hybrids and potential impact on heterosis are largely unknown. We constructed transcriptome-wide mRNA m6A methylation maps of Arabidopsis thaliana Col-0 and Landsberg erecta (Ler) and their reciprocal F1 hybrids. Generally, the transcriptome-wide pattern of m6A methylation tends to be conserved between accessions. Approximately 74% of m6A methylation peaks are consistent between the parents and hybrids, indicating that a majority of the m6A methylation is maintained after hybridization. We found a significant association between differential expression and differential m6A modification, and between non-additive expression and non-additive methylation on the same gene. The overall RNA m6A level between Col-0 and Ler is clearly different but tended to disappear at the allelic sites in the hybrids. Interestingly, many enriched biological functions of genes with differential m6A modification between parents and hybrids are also conserved, including many heterosis-related genes involved in biosynthetic processes of starch. Collectively, our study revealed the overall pattern of inheritance of mRNA m6A modifications from parents to hybrids and a potential new layer of regulatory mechanisms related to heterosis formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...