Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Am Chem Soc ; 146(20): 13875-13885, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718165

RESUMEN

Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.


Asunto(s)
Pirazinas , Teoría Cuántica , Pirazinas/química , Pirazinas/metabolismo , Renilla/enzimología , Luciferasas/química , Luciferasas/metabolismo , Luminiscencia , Animales , Imidazoles/química , Bencenoacetamidas
2.
Nat Commun ; 15(1): 1663, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396109

RESUMEN

Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.


Asunto(s)
Psoriasis , Piel , Animales , Ratones , Piel/patología , Interleucina-17/metabolismo , Proteolisis , Psoriasis/metabolismo , Receptores Depuradores/metabolismo , Proteínas de la Membrana/metabolismo , Lisosomas/metabolismo , Modelos Animales de Enfermedad
3.
Chembiochem ; 25(7): e202300747, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38191871

RESUMEN

Peptide side chain stapling has been proven to be an effective strategy for fine-tuning peptide properties. This innovative approach leads to the creation of stapled peptides characterized by stabilized α-helical conformations, enhanced protein-binding affinity, improved cell permeability, superior enzymatic stability, and numerous other advantages. Extensive research has explored the impact of various stapling bridges on the properties of these peptides, with limited investigation into the influence of bridge chirality, until very recently. In this concise review, we provide a brief overview of the current state of knowledge regarding the stereochemistry within the bridges of stapled peptides, offering insights into the potential applications of chiral bridges in the design and development of stapled peptides.


Asunto(s)
Péptidos , Péptidos/química , Unión Proteica , Conformación Proteica en Hélice alfa
4.
Angew Chem Int Ed Engl ; 63(1): e202309140, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37950683

RESUMEN

Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+  T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.


Asunto(s)
Células Dendríticas , Glicopéptidos , Animales , Ratones , Glicopéptidos/metabolismo , Adyuvantes Inmunológicos/farmacología , Antígenos/metabolismo , Carbohidratos/química , Ovalbúmina/química , Ratones Endogámicos C57BL
5.
Proc Natl Acad Sci U S A ; 120(48): e2312848120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983512

RESUMEN

The availability of natural protein sequences synergized with generative AI provides new paradigms to engineer enzymes. Although active enzyme variants with numerous mutations have been designed using generative models, their performance often falls short of their wild type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze Renilla luciferase (RLuc) homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate to improve either luciferase activity or stability of designed single mutants is ~50%. This finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in RLuc toward emitting blue light that holds advantages in terms of water penetration compared to other light spectra. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.


Asunto(s)
Luz , Mutación , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Estabilidad de Enzimas
6.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37786693

RESUMEN

The availability of natural protein sequences synergized with generative artificial intelligence (AI) provides new paradigms to create enzymes. Although active enzyme variants with numerous mutations have been produced using generative models, their performance often falls short compared to their wild-type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze Renilla luciferase homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate of designed single mutants is ~50% to improve either luciferase activity or stability. These finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in Renilla luciferase towards emitting blue light that holds advantages in terms of water penetration compared to other light spectrum. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.

7.
Nanotechnology ; 34(50)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748450

RESUMEN

Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.

8.
Adv Clin Exp Med ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747442

RESUMEN

BACKGROUND: Osteosarcoma is a pleomorphic cancer that frequently affects children and teenagers. Although several chemotherapy regimens have been utilized for many years, the best therapeutic option for the treatment of osteosarcoma has not yet been determined. OBJECTIVES: This meta-analysis was designed to assess the clinical efficacy of a high-dose methotrexate, doxorubicin and cisplatin (MAP) regimen and compare its survival outcomes with those of other chemotherapy strategies in patients diagnosed with osteosarcoma. MATERIAL AND METHODS: We systematically searched databases, namely Embase, the Cochrane Library and PubMed, up to August 2022, for relevant studies investigating the impact of the MAP chemotherapy protocol on survival among patients with osteosarcoma. The odds ratio (OR) pooled estimates and their 95% confidence intervals (95% CIs) were calculated. RESULTS: Twelve studies including 4102 patients were eligible for analysis in this study. The estimated pooled ORs of the 3-year overall survival (OS) and event-free survival (EFS) were OR = 1.08 (95% CI: 0.72-1.62, p = 0.70) and OR = 1.04 (95% CI: 0.81-1.32, p = 0.78, respectively). The 5-year OS and EFS were OR = 0.87 (95% CI: 0.62-1.23, p = 0.42) and OR = 1.13 (95% CI: 0.76-1.68, p = 0.54), respectively, with no statistical differences. The subgroup analysis of MAP compared to a 2-drug regimen (doxorubicin and cisplatin) revealed a significant difference between the 2 chemotherapy strategy groups in 3-year OS rates (OR = 0.72 (95% CI: 0.56-0.92, p = 0.009)) and 5-year EFS rates (OR = 0.57 (95% CI: 0.43-0.76, p < 0.001)). CONCLUSION: The MAP chemotherapy strategy for osteosarcoma showed superiority over other regimens, especially over the 2-drug regimen (doxorubicin/cisplatin), in terms of better prognosis and safety.

9.
J Am Chem Soc ; 145(23): 12673-12681, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37271942

RESUMEN

Itaconate is an important antimicrobial and immunoregulatory metabolite involved in host-pathogen interactions. A key mechanistic action of itaconate is through the covalent modification of cysteine residues via Michael addition, resulting in "itaconation". However, it is unclear whether itaconate has other regulatory mechanisms. In this work, we discovered a novel type of post-translational modification by promiscuous antibody enrichment and data analysis with the open-search strategy and further confirmed it as the lysine "itaconylation". We showed that itaconylation and its precursor metabolite itaconyl-CoA undergo significant upregulation upon lipopolysaccharides (LPS) stimulation in RAW264.7 macrophages. Quantitative proteomics identified itaconylation sites in multiple functional proteins, including glycolytic enzymes and histones, some of which were confirmed by synthetic peptide standards. The discovery of lysine itaconylation opens up new areas for studying how itaconate participates in immunoregulation via protein post-translational modification.


Asunto(s)
Lisina , Succinatos , Lisina/metabolismo , Succinatos/química , Acilación , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
10.
Cell Rep Med ; 4(6): 101061, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37267943

RESUMEN

Ovarian cancer (OC) causes high mortality in women because of ineffective biomarkers for early diagnosis. Here, we perform metabolomics analysis on an initial training set of uterine fluid from 96 gynecological patients. A seven-metabolite-marker panel consisting of vanillylmandelic acid, norepinephrine, phenylalanine, beta-alanine, tyrosine, 12-S-hydroxy-5,8,10-heptadecatrienoic acid, and crithmumdiol is established for detecting early-stage OC. The panel is further validated in an independent sample set from 123 patients, discriminating early OC from controls with an area under the curve (AUC) of 0.957 (95% confidence interval [CI], 0.894-1). Interestingly, we find elevated norepinephrine and decreased vanillylmandelic acid in most OC cells, resulting from excess 4-hydroxyestradiol that antagonizes the catabolism of norepinephrine by catechol-O-methyltransferase. Moreover, exposure to 4-hydroxyestradiol induces cellular DNA damage and genomic instability that could lead to tumorigenesis. Thus, this study not only reveals metabolic features in uterine fluid of gynecological patients but also establishes a noninvasive approach for the early diagnosis of OC.


Asunto(s)
Catecol O-Metiltransferasa , Neoplasias Ováricas , Humanos , Femenino , Ácido Vanilmandélico , Detección Precoz del Cáncer , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Metaboloma , Norepinefrina
11.
Chem Commun (Camb) ; 59(43): 6513-6516, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37158214

RESUMEN

Desulfurization is a versatile synthetic tool in organic synthesis, particularly in peptide chemistry, where it offers an effective conversion strategy for compounds that contain mercaptan groups. In this study, we present a metal-free desulfurization method for amino acids and peptides using a Togni-II reagent as a radical initiator. Our method showed excellent efficiency and extensive substrate tolerance, circumventing the formation of radical adducts caused by VA-044. The obtained results further expand the applicability of Togni-II reagent as a key promotor in radical-based reactions.

12.
Eur J Histochem ; 67(2)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195011

RESUMEN

Metformin can enhance cancer cell chemosensitivity to anticancer drugs. IGF-1R is involved in cancer chemoresistance. The current study aimed to elucidate the role of metformin in osteosarcoma (OS) cell chemosensitivity modulation and identify its underlying mechanism in IGF-1R/miR-610/FEN1 signalling. IGF-1R, miR-610, and FEN1 were aberrantly expressed in OS and participated in apoptosis modulation; this effect was abated by metformin treatment. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-610. Moreover, metformin treatment decreased IGF-1R and FEN1 but elevated miR-610 expression. Metformin sensitised OS cells to cytotoxic agents, while FEN1 overexpression partly compromised metformin's sensitising effects. Furthermore, metformin was observed to enhance adriamycin's effects in a murine xenograft model. Metformin enhanced OS cell sensitivity to cytotoxic agents via the IGF-1R/miR-610/FEN1 signalling axis, highlighting its potential as an adjuvant during chemotherapy.


Asunto(s)
Neoplasias Óseas , Metformina , MicroARNs , Osteosarcoma , Humanos , Ratones , Animales , MicroARNs/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Citotoxinas/farmacología , Proliferación Celular , Línea Celular Tumoral , Endonucleasas de ADN Solapado
13.
Bioorg Chem ; 134: 106424, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868126

RESUMEN

Cell-penetrating peptides (CPPs) are prominent scaffolds for drug developments and related research, particularly the endocytic delivery of biomacromolecules. Effective cargo release from endosomes prior to lysosomal degradation is a crucial step, where the rational design and selection of CPPs remains a challenge and calls for deeper mechanistic understandings. Here, we have investigated a strategy of designing CPPs that selectively disrupt endosomal membranes based on bacterial membrane targeting sequences (MTSs). Six synthesized MTS peptides all exhibit cell-penetrating abilities, among which two d-peptides (d-EcMTS and d-TpMTS) are able to escape from endosomes and localize at ER after entering the cell. The utility of this strategy has been demonstrated by the intracellular delivery of green fluorescent protein (GFP). Together, these results suggest that the large pool of bacterial MTSs may be a rich source for the development of novel CPPs.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/química , Endosomas/química , Endosomas/metabolismo
14.
Chemistry ; 29(29): e202203624, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36891840

RESUMEN

Peptide stapling represents a versatile strategy to generate peptide derivatives with stable helical structures. While a wide range of skeletons have been investigated for cyclizing the side chains of peptides, the stereochemical outcomes from the linkers remain to be better understood. In this study, we incorporated α-amino acids (α-AAs) as bridges to construct side chain-stapled analogs of an interleukin-17A-binding peptide (HAP) and evaluated the impacts of the staples on the peptide's properties. While all AA-derived peptidyl staples drastically increase the enzymatic stability of HAP, our results indicate that compared to the D-amino acid bridges, the L-AA-based staples may generate more significant impacts in increasing the helicity and enhancing the interleukin-17A(IL-17A)-binding affinity of the modified peptide. Using Rosetta modelling and molecular dynamics (MD) simulations, we demonstrate that the chirality (L/D) possessed within the AAs substantially influences the conformation of stapled HAP peptides, providing either stabilizing or destabilizing effects. Based on the computational model, a modification of the stapled HAP leads to the discovery of a peptide with further enhanced helicity, enzymatic stability and IL-17A-inhibiting ability. This systematic study reveals that chiral AAs can serve as modulatory linkers for optimizing the structures and properties of stapled peptides.


Asunto(s)
Interleucina-17 , Péptidos , Péptidos/química , Aminoácidos , Conformación Molecular , Unión Proteica
15.
Chembiochem ; 24(1): e202200388, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35977913

RESUMEN

N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.


Asunto(s)
Glicoproteínas , Polisacáridos , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/química , Oligosacáridos/metabolismo , Glicósido Hidrolasas/metabolismo
16.
J Med Chem ; 65(18): 12176-12187, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36066386

RESUMEN

Targeted degradation of proteins, especially those regarded as undruggable or difficult to drug, attracts wide attention to develop novel therapeutic strategies. Glutathione peroxidase 4 (GPX4), the key enzyme regulating ferroptosis, is currently a target with just covalent inhibitors. Here, we developed a targeted photolysis approach and achieved efficient degradation of GPX4. The photodegradation-targeting chimeras (PDTACs) were synthesized by conjugating a clinically approved photosensitizer (verteporfin) to noninhibitory GPX4-targeting peptides. These chimeras selectively degraded the target protein in both cell lysates and living cells upon red-light irradiation. The targeted photolysis of GPX4 resulted in dominant ferroptotic cell death in malignant cancer cells. Moreover, the dying cells resulting from the PDTACs exhibited potent immunogenicity in vitro and efficiently elicited antitumor immunity in vivo. Our approach therefore provides a novel method to induce GPX4 dysfunction based on noncovalent binding and specifically trigger immunogenic ferroptosis, which may boost the application of ferroptosis in cancer immunotherapy.


Asunto(s)
Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fotólisis , Fármacos Fotosensibilizantes , Verteporfina
17.
ACS Appl Mater Interfaces ; 14(31): 35319-35332, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881151

RESUMEN

Safe and effective biomaterials are in urgent clinical need for tissue regeneration and bone repair. While numerous advances have been made on hydrogels promoting osteogenesis in bone formation, co-stimulation of the angiogenic pathways in this process remains to be exploited. Here, we have developed a gelatin-based blue-light-curable hydrogel system, functionalized with an angiogenic vascular endothelial growth factor (VEGF) mimetic peptide, KLTWQELYQLKYKGI (KLT), and an osteoanabolic peptide, parathyroid hormone (PTH) 1-34. We have discovered that the covalent modification of gelatin scaffold with peptides can modulate the physical properties and biological activities of the produced hydrogels. Furthermore, we have demonstrated that those two peptides orchestrate synergistically and promote bone regeneration in a rat cranial bone defect model with remarkable efficacy. This dual-peptide-functionalized hydrogel system may serve as a promising lead to functional biomaterials in bone repair and tissue engineering.


Asunto(s)
Hidrogeles , Factor A de Crecimiento Endotelial Vascular , Animales , Materiales Biocompatibles/química , Regeneración Ósea , Gelatina/química , Gelatina/farmacología , Hidrogeles/química , Osteogénesis , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico , Péptidos/química , Péptidos/farmacología , Ratas , Factor A de Crecimiento Endotelial Vascular/química
18.
Nat Chem ; 14(7): 831-840, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637289

RESUMEN

Liquid-liquid phase separation (LLPS) of SynGAP and PSD-95, two abundant proteins that interact in the postsynaptic density (PSD) of neurons, has been implicated in modulating SynGAP PSD enrichment in excitatory synapses. However, the underlying regulatory mechanisms remain enigmatic. Here we report that O-GlcNAcylation of SynGAP acts as a suppressor of LLPS of the SynGAP/PSD-95 complex. We identified multiple O-GlcNAc modification sites for the endogenous SynGAP isolated from rat brain and the recombinantly expressed protein. Protein semisynthesis was used to generate site-specifically O-GlcNAcylated forms of SynGAP, and in vitro and cell-based LLPS assays demonstrated that T1306 O-GlcNAc of SynGAP blocks the interaction with PSD-95, thus inhibiting LLPS. Furthermore, O-GlcNAcylation suppresses SynGAP/PSD-95 LLPS in a dominant-negative manner, enabling sub-stoichiometric O-GlcNAcylation to exert effective regulation. We also showed that O-GlcNAc-dependent LLPS is reversibly regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). These findings demonstrate that OGT- and OGA-catalysed O-GlcNAc cycling may serve as an LLPS-regulating post-translational modification.


Asunto(s)
Acetilglucosamina , Procesamiento Proteico-Postraduccional , Acetilglucosamina/metabolismo , Animales , Neuronas/metabolismo , Ratas
19.
Bioengineered ; 13(3): 7238-7252, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35266447

RESUMEN

As a staple chemotherapy medicine, cisplatin (DDP) is extensively applied in cancer patients, but its drug resistance is limited. Numerous studies have elucidated that long non-coding RNA (lncRNA) performs as a pivotal agent in osteosarcoma (OS). Nevertheless, lncRNA long intergenic non-coding 00641 (LINC00641)'s functions in DDP resistance for OS remain obscure. The purpose of this study was to investigate the effect and mechanism of LINC00641 on drug resistance of OS. The tissues of both clinical cancer patients and the normal control were gathered. Detection of LINC00641, microRNA-320d (miR-320d) and myeloid cell leukemia-1 (MCL1) was conducted. After the selection of OS cell lines, the detection of cell advancement was applied. Series of experiments were conducted to verify the interaction of LINC00641, miR-320d and MCL1. Xenografted tumor model in vivo was utilized to determine the function of LINC00641. The data displayed, LINC00641 was prominently elevated in OS tissues and cells, especially in DDP-resistant tumors and cell lines. Knock-down LINC00641 was able to attenuate progression of DDP-resistant OS cells thus dampening their drug resistance toward DDP. Moreover, knock-downing LINC00641 gene was also able to manifest antagonism toward DDP-resistance in vivo. On the grounds of bioinformatics prediction, a direct binding of LINC00641 with miR-320d existed, whose target was MCL1. Meanwhile, LINC00641 modulated MCL1 via targeting miR-320d. Additionally, repressive LINC00641 blocked MCL1 via emulative interaction with miR-320d, thus expediting DDP-sensitivity of OS cells. All in all, it is found that LINC00641 is available to escalate drug resistance of DDP-resistant OS cells via mediation of miR-320d/MCL1 axis.


Asunto(s)
Neoplasias Óseas , Leucemia , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Apoptosis , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Humanos , MicroARNs/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Células Mieloides/metabolismo , Células Mieloides/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
20.
Angew Chem Int Ed Engl ; 61(19): e202116545, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35225420

RESUMEN

Protein glycosylation plays critical roles in many biological processes. However, the fundamental study and application of glycobiology are hindered by the heterogeneousness of oligosaccharides in natural glycoproteins and the difficulty in constructing glycoproteins of human design. Herein, we describe a semisynthetic method to site-specifically modify proteins with reducing carbohydrates. The method involves the genetic incorporation of a side-chain-esterified aspartate, which was subsequently quantitatively converted into alanine-ß-hydrazide (Aßz), and chemoselective conjugation of Aßz with a range of readily available reducing carbohydrates. The resulting Aßz-linked GlcNAc is a close mimic of native N-GlcNAc and could be installed on various proteins, including IL-17A and RNase A. Notably, Aßz-linked GlcNAc on proteins reacted with biantennary oligosaccharide oxazoline derivatives through endoglycosidase-catalyzed transglycosylation reactions to enable the assembly of homogeneous glycans on proteins.


Asunto(s)
Glicoproteínas , Oligosacáridos , Glicoproteínas/metabolismo , Glicosilación , Humanos , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...