Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Adv Mater ; : e2406636, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148152

RESUMEN

Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs. With this foundation, the Bio-patch can effectively intervene with excessive fibrosis and microvascular stasis during the natural healing process by regulating the polarization time of macrophages, promoting the reconstruction of the tissue-engineered structure, and accelerating the repair of damaged liver and kidney. This work develops a practical approach to realize biomimetic electronic modulation of the growth and development of soft organs only using a multifunctional Bio-patch, which establishes a new paradigm for precise bioelectronic medicine.

2.
Am J Primatol ; : e23676, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148233

RESUMEN

Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.

3.
Science ; 385(6709): eadf4478, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39116228

RESUMEN

Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.


Asunto(s)
Condensados Biomoleculares , Proteínas de Drosophila , Drosophila melanogaster , Vía de Señalización Hippo , Neurofibromina 2 , Animales , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Uniones Intercelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Condensados Biomoleculares/metabolismo
4.
CNS Neurosci Ther ; 30(8): e14902, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138637

RESUMEN

AIMS: Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS: The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS: Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS: CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.


Asunto(s)
Delirio , MicroARNs , Neuronas , Complicaciones Posoperatorias , ARN Circular , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Delirio/metabolismo , Ratones , MicroARNs/metabolismo , MicroARNs/genética , ARN Circular/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Masculino , Complicaciones Posoperatorias/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Ratones Endogámicos C57BL , Fracturas de la Tibia/cirugía , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología
5.
J Pharm Biomed Anal ; 250: 116405, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39151298

RESUMEN

Therapeutic drug monitoring (TDM) of imatinib (IM) in cancer therapy offers the potential to improve treatment efficacy while minimizing toxicity. There was a significant correlation between unbound concentration and clinical response and toxicity, compared with total plasma concentrations, and the quantification of unbound IM and its metabolite, N-desmethyl imatinib (NDI) are of interest for TDM. However, traditional unbound drug separation methods have shortcomings, especially are susceptible to non-specific binding (NSB) of drugs to the polymer-constructed components of filter membranes, which are difficult to avoid at present. Hence it is necessary to developed a reliable separation method for the analysis of the unbound fraction of IM and NDI in TDM. We developed and validated an hollow fiber solid phase microextraction (HF-SPME) method coupled with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) that to measure unbound IM and NDI concentration in human plasma. It used the NSB phenomenon and solve the NSB problem. The preparation procedure only involves a common vortex and ultrasonication without dilution of samples and modification of membrane. A total of 50 chronic myeloid leukemia (CML) patients were enrolled in our study. The relationship between the unbound and total concentrations for IM and NDI, as well as the concentration ratios of NDI to IM in 50 clinical plasma samples were investigated. The extraction recovery is high to 95.5-106 % with validation parameters for the methodological results were all excellent. There were both a poor linear relationship between the unbound and total concentrations for IM (r2=0.504) and NDI (r2=0.201) in 50 clinical plasma samples. The unbound concentration ratios of NDI to IM varied widely in CML patients. The determination of unbound IM and NDI concentration is meaningful and necessary. The developed HF-SPME method is simple, accurate and precise that could be used to measure unbound IM and NDI concentration in clinical TDM.

6.
Acta Pharmacol Sin ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152295

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aß accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.

7.
Heliyon ; 10(15): e34939, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39161832

RESUMEN

Purpose: This study aims to investigate patient characteristics with lens zonular ligament abnormalities in Acute Primary Angle Closure (APAC), identifying related risk factors, and evaluating the efficacy of Pilocarpine, a miotic agent. Design: Retrospective case-control study. Methods: Conducted as a retrospective case-control study at Hebei Provincial Eye Hospital from January 1, 2019, to December 31, 2021, the study included APAC cases undergoing ultrasound phacoemulsification with or without glaucoma surgery. Zonular ligament status was determined by intraoperative indicators such as lens equator visibility post-mydriasis and anterior capsule wrinkling during capsulorhexis. Patients were categorized into APAC and APAC with Lens Subluxation (APACLS) groups. Demographic details, Central Anterior Chamber Depth (ACD), Axial Length (AL), ACD difference between eyes (ACDD), Lens Thickness (LT), Lens Position (LP), and Relative Lens Position (RLP) were recorded and compared. Pilocarpine's impact on intraocular pressure reduction was assessed. Statistical analysis involved bilateral t-tests (for normally distributed data comparing both eyes in each group), non-parametric tests (for comparing two groups with non-normally distributed data), binary logistic regression, and Receiver Operating Characteristic (ROC) curve analysis for cutoff value determination related to zonular abnormalities. Results: The APAC and APACLS groups showed no significant difference in age of onset (70.11 ± 8.67 years vs. 70.11 ± 8.67 years, P = 0.159) or axial length of the eye (22.35 ± 0.64 mm vs. 22.36 ± 0.78 mm, P = 0.929). In the APACLS group, LT was greater (5.24 ± 0.37 mm vs. 5.01 ± 0.36 mm, P = 0.011), ACD was shallower (1.42 ± 0.24 mm vs. 1.69 ± 0.24 mm, P = 0.000), and ACDD was larger (0.38 ± 0.22 mm vs. 0.18 ± 0.18 mm, P = 0.000). The LP was lower (4.04 ± 0.32 vs. 4.20 ± 0.22, P = 0.013), and RLP was also lower (0.18 ± 0.02 vs. 0.19 ± 0.01, P = 0.015) in the APACLS group. A shallow ACD and a large ACDD were identified as risk factors associated with lens zonular abnormalities in the affected eyes (ACD OR value 63.97, P = 0.027; ACDD OR value 0.029, P = 0.027). Using ROC curve analysis, the cutoff value for ACDD was determined to be 0.375 mm, and for ACD, it was 1.6 mm. After pupil constriction with Pilocarpine eye drops, the proportion of patients whose intraocular pressure normalized was 75.36 % (52/69) in the APAC group and 71.43 % (25/35) in the APACLS group. Conclusion: ACD and ACDD in the affected eye are indicative of increased risk for APACLS. An ACD <1.6 mm and ACDD >0.375 mm should prompt consideration of zonular ligament abnormalities. Pilocarpine as a miotic treatment is safe and effective for such patients.

8.
Cell Mol Life Sci ; 81(1): 344, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133273

RESUMEN

Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Neovascularización Fisiológica , Osteogénesis , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Osteogénesis/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Neovascularización Fisiológica/genética , Animales , Células Endoteliales/metabolismo , Células Endoteliales/citología , Ratones , Humanos , Células Cultivadas , Transducción de Señal , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Reprogramación Metabólica , Angiogénesis
10.
Int J Biol Macromol ; 278(Pt 1): 134613, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127284

RESUMEN

In the present study, the in vivo absorption and fecal excretion of a purified fraction of polysaccharides from the fruits of Lycium barbarum L. (LBPs-4) in rats were investigated by labelling LBPs-4 with fluorescein isothiocyanate (FITC). It was found that the fluorescent labeled LBPs-4 (LBPs-4-FITC) was not detected in the plasma within 24 h following the administration of a single dose of LBPs-4-FITC (100 mg/kg of body weight) to rats, indicating that LBPs-4 was hardly absorbed in its prototype form. Instead, a smaller fragment dissociated from LBPs-4-FITC was observed in feces and was accumulated in a time-dependent manner, suggesting that LBPs-4 was excreted into the feces with a form of degradation. Meanwhile, we observed that LBPs-4-FTIC could modulate the fecal bacterial community profile via increasing the relative abundances of Bacteroides ovatus and Alistipes and promote the production of acetic acid. Furthermore, the monoculture experiment confirmed that LBPs-4 could be metabolized into smaller fragment by B. ovatus, producing acetic acid. Collectively, our study provides information on the destiny of LBPs-4 after oral administration: non-absorbed but moved to the large intestine and catabolized by gut microbiota, especially B. ovatus.

11.
BMC Surg ; 24(1): 225, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113003

RESUMEN

BACKGROUND: Pediatric patients undergoing liver transplantation are particularly susceptible to complications arising from intraoperative fluid management strategies. Conventional liberal fluid administration has been challenged due to its association with increased perioperative morbidity. This study aimed to assess the impact of intraoperative high-volume fluid therapy on pediatric patients who are undergoing living donor liver transplantation (LDLT). METHODS: Conducted at the Children's Hospital of Chongqing Medical University from March 2018 to April 2021, this retrospective study involved 90 pediatric patients divided into high-volume and non-high-volume fluid administration groups based on the 80th percentile of fluid administered. We collected the perioperative parameters and postoperative information of two groups. Multivariable logistic regression was utilized to assess the association between estimated blood loss (EBL) and high-volume FA. Kaplan-Meier survival analysis was used to compare patient survival after pediatric LDLT. RESULTS: Patients in the high-volume FA group received a higher EBL and longer length of stay than that in the non-high-volume FA group. Multivariate logistic regression analysis indicated that hours of maintenance fluids and fresh frozen plasma were significantly associated risk factors for the occurrence of EBL during pediatric LDLT. In addition, survival analysis showed no significant differences in one-year mortality between the groups. CONCLUSIONS: High-volume fluid administration during LDLT is linked with poorer intraoperative and postoperative outcomes among pediatric patients. These findings underscore the need for more conservative fluid management strategies in pediatric liver transplantations to enhance recovery and reduce complications.


Asunto(s)
Fluidoterapia , Cuidados Intraoperatorios , Trasplante de Hígado , Donadores Vivos , Humanos , Masculino , Femenino , Fluidoterapia/métodos , Estudios Retrospectivos , Preescolar , Niño , Cuidados Intraoperatorios/métodos , Lactante , Resultado del Tratamiento , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Tiempo de Internación/estadística & datos numéricos , Adolescente
12.
Front Pharmacol ; 15: 1416295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948469

RESUMEN

Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.

13.
Pest Manag Sci ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022822

RESUMEN

BACKGROUND: Ensuring the efficient recognition and management of crop pests is crucial for maintaining the balance in global agricultural ecosystems and ecological harmony. Deep learning-based methods have shown promise in crop pest recognition. However, prevailing methods often fail to address a critical issue: biased pest training dataset distribution stemming from the tendency to collect images primarily in certain environmental contexts, such as paddy fields. This oversight hampers recognition accuracy when encountering pest images dissimilar to training samples, highlighting the need for a novel approach to overcome this limitation. RESULTS: We introduce the Decoupled Feature Learning (DFL) framework, leveraging causal inference techniques to handle training dataset bias. DFL manipulates the training data based on classification confidence to construct different training domains and employs center triplet loss for learning class-core features. The proposed DFL framework significantly boosts existing baseline models, attaining unprecedented recognition accuracies of 95.33%, 92.59%, and 74.86% on the Li, DFSPD, and IP102 datasets, respectively. CONCLUSION: Extensive testing on three pest datasets using standard baseline models demonstrates the superiority of DFL in pest recognition. The visualization results show that DFL encourages the baseline models to capture the class-core features. The proposed DFL marks a pivotal step in mitigating the issue of data distribution bias, enhancing the reliability of deep learning in agriculture. © 2024 Society of Chemical Industry.

14.
Cell Insight ; 3(4): 100178, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39027058

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and presents a significant threat to human health. Despite its prevalence, the underlying regulatory mechanisms of HCC remain unclear. In this study, we integrated RNA-seq datasets, proteome dataset and survival analysis and unveiled Stratifin (SFN) as a potential prognostic biomarker for HCC. SFN knockdown inhibited HCC progression in cell cultures and mouse models. Conversely, ectopic expression of Sfn in primary mouse HCC model accelerated HCC progression. Mechanistically, SFN acted as an adaptor protein, activating AKT1 signaling by fostering the interaction between PDK1 and AKT1, with the R56 and R129 sites on SFN proving to be crucial for this binding. In the syngeneic implantation model, the R56A/R129A mutant of SFN inhibited Akt signaling activation and impeded HCC growth. Additionally, peptide inhibitors designed based on the binding motif of AKT1 to SFN significantly inhibited HCC progression. In summary, our findings establish that SFN promotes HCC progression by activating AKT signaling through the R56 and R129 binding sites. This discovery opens new avenues for a promising therapeutic strategy for the treatment of HCC.

15.
Bone ; 187: 117199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992453

RESUMEN

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cemento Dental , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Cemento Dental/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones , Proteína C-Reactiva/metabolismo , Integrina beta1/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Ratones Endogámicos C57BL , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Cementogénesis
16.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065844

RESUMEN

The bird's-eye view (BEV) method, which is a vision-centric representation-based perception task, is essential and promising for future Autonomous Vehicle perception. It has advantages of fusion-friendly, intuitive, end-to-end optimization and is cheaper than LiDAR. The performance of existing BEV methods, however, would be deteriorated under the situation of a tire blow-out. This is because they quite rely on accurate camera calibration which may be disabled by noisy camera parameters during blow-out. Therefore, it is extremely unsafe to use existing BEV methods in the tire blow-out situation. In this paper, we propose a geometry-guided auto-resizable kernel transformer (GARKT) method, which is designed especially for vehicles with tire blow-out. Specifically, we establish a camera deviation model for vehicles with tire blow-out. Then we use the geometric priors to attain the prior position in perspective view with auto-resizable kernels. The resizable perception areas are encoded and flattened to generate BEV representation. GARKT predicts the nuScenes detection score (NDS) with a value of 0.439 on a newly created blow-out dataset based on nuScenes. NDS can still obtain 0.431 when the tire is completely flat, which is much more robust compared to other transformer-based BEV methods. Moreover, the GARKT method has almost real-time computing speed, with about 20.5 fps on one GPU.

17.
J Adv Res ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969095

RESUMEN

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

18.
Food Funct ; 15(16): 8477-8487, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39054889

RESUMEN

2-O-ß-D-Glucopyranosyl-L-ascorbic acid (AA-2ßG) from Lycium barbarum fruits has diverse bioactivities, yet its absorption and digestion are poorly understood. Therefore, the in vivo absorption of AA-2ßG in rats was investigated in the present study. After oral administration to SD rats, AA-2ßG was absorbed intact, reaching a peak plasma concentration of 472.32 ± 296.64 nM at 90 min, with fecal excretion peaking at 4-8 h and decreasing rapidly by 12-24 h, indicating a prolonged intestinal presence. Furthermore, the digestibility under simulated gastrointestinal conditions and the impact on the gut flora through in vitro fermentation of AA-2ßG were investigated. The results reveal that AA-2ßG resisted in in vitro simulated digestion, indicating potential interactions with the gut microbiota. The results of in vitro fermentation showed that AA-2ßG regulated the composition of the gut microbiota by promoting Oscillospiraceae, Faecalibacterium, Limosilactobacillus, and Fusicatenibacter, while inhibiting Enterococcus, Phocaeicola, Bacteroides, and Streptococcus. Furthermore, at the species level, AA-2ßG promoted the growth of Limosilactobacillus mucosae and Faecalibacterium prausnitzii, and inhibited the growth of Enterococcus. F. prausnitzii is a major producer of n-butyric acid, and the results of short-chain fatty acids also demonstrated a significant promotion of n-butyric acid. Therefore, the study on the absorption, excretion, and regulatory effects of AA-2ßG on the gut microbiota supported its potential development as a functional food additive to enhance intestinal health and prevent diseases.


Asunto(s)
Ácido Ascórbico , Digestión , Fermentación , Frutas , Microbioma Gastrointestinal , Lycium , Ratas Sprague-Dawley , Microbioma Gastrointestinal/efectos de los fármacos , Lycium/química , Animales , Ratas , Frutas/química , Humanos , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/análogos & derivados , Masculino , Bacterias/clasificación , Bacterias/metabolismo , Heces/microbiología , Absorción Intestinal
19.
Int Immunopharmacol ; 139: 112745, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059099

RESUMEN

Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis , Receptores de Bombesina , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Humanos , Necroptosis/efectos de los fármacos , Ratones , Masculino , Línea Celular , Receptores de Bombesina/metabolismo , Receptores de Bombesina/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA