RESUMEN
The dioxygen formation mechanism of biological water oxidation in nature has long been the focus of argument; many diverse mechanistic hypotheses have been proposed. Based on a recent breakthrough in the resolution of the electronic and structural properties of the oxygen-evolving complex in the S3 state, our density functional theory (DFT) calculations reveal that the open-cubane oxo-oxyl coupling mechanism, whose substrates preferably originate from W2 and O5 in the S2 state, emerges as the best candidate for O-O bond formation in the S4 state. This is justified by the overwhelming energetic superiority of this mechanism over alternative mechanisms in both the isomeric open and closed-cubane forms of the Mn4CaO5 cluster; spin-dependent reactivity rooted in variable magnetic couplings was found to play an essential role. Importantly, this oxygen evolution mechanism is supported by the recent discovery of femtosecond X-ray free electron lasers (XFEL), and the origin of the observed structural changes from the S1 to S3 state has been analyzed. In this view, we corroborate the proposed water binding mechanism during S2-S3 transition and correlate the theoretical models with experimental findings from aspects of substrate selectivity according to water exchange kinetics. This theoretical consequence for native metalloenzymes may serve as a significant guide for improving the design and synthesis of biomimetic materials in the field of photocatalytic water splitting.
RESUMEN
OBJECTIVE: To compare compensatory sweating after lowering or restricting the level of sympathectomy. METHOD: A systematic review and meta-analysis were conducted of all randomized controlled trials published in English that compared compensatory sweating after lowering or restricting the level of sympathectomy. The Cochrane collaboration tool was used to assess the risk of bias, and the Mantel-Haenszel odds ratio method was used for the meta-analysis. RESULTS: A total of 11 randomized controlled trials were included, including a total of 1079 patients. Five of the randomized controlled trials studied restricting the level of sympathectomy, and the remaining six studied lowering the level of sympathectomy. CONCLUSIONS: The compiled randomized controlled trial results published so far in the literature do not support the claims that lowering or restricting the level of sympathetic ablation results in less compensatory sweating.
Asunto(s)
Hiperhidrosis/fisiopatología , Hiperhidrosis/cirugía , Sudoración/fisiología , Simpatectomía/métodos , Humanos , Sesgo de Publicación , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Riesgo , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
OBJECTIVE: To compare compensatory sweating after lowering or restricting the level of sympathectomy. METHOD: A systematic review and meta-analysis were conducted of all randomized controlled trials published in English that compared compensatory sweating after lowering or restricting the level of sympathectomy. The Cochrane collaboration tool was used to assess the risk of bias, and the Mantel-Haenszel odds ratio method was used for the meta-analysis. RESULTS: A total of 11 randomized controlled trials were included, including a total of 1079 patients. Five of the randomized controlled trials studied restricting the level of sympathectomy, and the remaining six studied lowering the level of sympathectomy. CONCLUSIONS: The compiled randomized controlled trial results published so far in the literature do not support the claims that lowering or restricting the level of sympathetic ablation results in less compensatory sweating. .
Asunto(s)
Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Indígenas Norteamericanos/estadística & datos numéricos , Medicaid/estadística & datos numéricos , United States Indian Health Service/estadística & datos numéricos , Alaska , Necesidades y Demandas de Servicios de Salud , Estados UnidosRESUMEN
Tissue factor pathway inhibitor (TFPI) plays a vitally important role in the blood coagulation pathway. Recent studies indicated that TFPI induces apoptosis in vascular smooth-muscle cells (VSMCs) in animals. The present study investigated whether the TFPI gene could also induce apoptosis in human vascular smooth-muscle cells (hVSMCs). Such cells were isolated from human umbilical arteries and subsequently transfected with pIRES-TFPI plasmid (2 µg/mL). MTT assaying and cell counting were applied to measure cell viability and proliferation, RT-PCR was utilized to analyze TFPI gene expression in the cells. Apoptosis was analyzed by fluorescence activated cell sorting (FACS). Several key proteins involved in apoptosis were examined through Western blotting. It was shown that TFPI gene transfer led to its increased cellular expression, with a subsequent reduction in hVSMC proliferation. Further investigation demonstrated that TFPI gene expression resulted in lesser amounts of procaspase-3, procaspase-8 and procascase-9, and an increased release of mitochondrial cytochrome c (cyt-c) into cytoplasm, thereby implying the involvement of both extrinsic and intrinsic pathways in TFPI gene-induced apoptosis in hVSMCs.
RESUMEN
Tissue factor pathway inhibitor (TFPI) plays a vitally important role in the blood coagulation pathway. Recent studies indicated that TFPI induces apoptosis in vascular smooth-muscle cells (VSMCs) in animals. The present study investigated whether the TFPI gene could also induce apoptosis in human vascular smooth-muscle cells (hVSMCs). Such cells were isolated from human umbilical arteries and subsequently transfected with pIRES-TFPI plasmid (2 μg/mL). MTT assaying and cell counting were applied to measure cell viability and proliferation, RT-PCR was utilized to analyze TFPI gene expression in the cells. Apoptosis was analyzed by fluorescence activated cell sorting (FACS). Several key proteins involved in apoptosis were examined through Western blotting. It was shown that TFPI gene transfer led to its increased cellular expression, with a subsequent reduction in hVSMC proliferation. Further investigation demonstrated that TFPI gene expression resulted in lesser amounts of procaspase-3, procaspase-8 and procascase-9, and an increased release of mitochondrial cytochrome c (cyt-c) into cytoplasm, thereby implying the involvement of both extrinsic and intrinsic pathways in TFPI gene-induced apoptosis in hVSMCs.