Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photobiomodul Photomed Laser Surg ; 42(5): 383-388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574328

RESUMEN

Objective: To evaluate the efficacy and safety of photobiomodulation therapy (PBMT) in the treatment of diabetic patients with refractory wound. Background: Refractory wound is one of the most challenging clinical complications of diabetes mellitus. Studies have shown that PBMT can promote wound healing in many ways. Methods: We reported a 55-year-old male patient with refractory diabetic wound after secretory carcinoma of the parotid gland surgery responding to 810 nm laser. Results: After PBMT, the refractory diabetic wound healed gradually without adverse events. During follow-up 5-years, the healed wound remained stable and showed no signs of recurrence. Conclusions: PBMT can be potentially considered as a therapeutic method in diabetic patients with refractory diabetic wound.


Asunto(s)
Terapia por Luz de Baja Intensidad , Neoplasias de la Parótida , Cicatrización de Heridas , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Parótida/radioterapia , Neoplasias de la Parótida/cirugía , Cicatrización de Heridas/efectos de la radiación , Complicaciones de la Diabetes/radioterapia
2.
Photobiomodul Photomed Laser Surg ; 42(3): 230-237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417045

RESUMEN

Objective: To evaluate the therapeutic effect of a novel air-cooled Nd:YAG laser in the venous lakes of the lips (VLL). Background: The thermal injury is one of the most important issues during laser therapy for venous lakes. Methods: Six pieces of fresh pork livers were used to provide 30 regions with a diameter of 6 mm for experiment in vitro, among which 15 regions were treated by Nd:YAG laser with air cooling until the tissue turned gray-white, whereas the rest were treated without air cooling as control. The operation time of laser irradiation, the degree of temperature increase, and the depth of coagulation tissue were compared between two groups. Then, 60 VLL patients were selected for Nd:YAG laser treatment with or without air cooling. The operation time of laser irradiation, the degree of temperature increase, the postoperative pain visual analog scale (VAS) score, and the percentage of lesions removed within 1 month were compared. Results: In tissue studies, the treated group showed a longer operation time of laser irradiation (p < 0.01), a lower degree of temperature increase (p < 0.01), and there was no significant statistical difference in the depth of coagulation tissue (p = 0.624). In clinical studies, the treated group showed a longer operation time of laser irradiation (p < 0.01), a lower degree of temperature increase (p < 0.01), and a lower VAS score on the 1st and 2nd day, compared with the control group (p < 0.01). Conclusions: Air cooling during Nd:YAG laser for the treatment of VLL can prolong the surgical time, but lowered tissue temperature and reduced patient pain within 2 days under the premise of ensuring the treatment effect.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Terapia por Luz de Baja Intensidad , Humanos , Láseres de Estado Sólido/uso terapéutico , Labio/cirugía , Temperatura
3.
Photobiomodul Photomed Laser Surg ; 41(11): 644-654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37638820

RESUMEN

Objective: The primary objective of this study was to evaluate the safety of 810 and 1064 nm laser treatment on dental implants. Background: Peri-implantitis is a challenge for clinicians and researchers. Methods: A pig mandible model was used to evaluate temperature increases during laser irradiation. Surface alterations on processed pure titanium discs were analyzed via scanning electron microscopy and measurement of surface contact angles. Processed titanium discs were cocultured in vitro with human gingival fibroblasts; subsequently, cell proliferation was measured. Results: The maximum temperature and time to reach each threshold were comparable. No surface alterations were detected after 810 nm laser irradiation, whereas surface cracks were observed after 1064 nm laser irradiation under the parameter setting of 31.84 W/cm2. Compared with unaltered processed pure titanium discs, the proliferation of human gingival fibroblasts was significantly greater on altered processed pure titanium discs. Conclusions: The use of either 810 or 1064 nm laser treatments may increase the risk of thermal damage in terms of increased temperature if the parameter setting is not warranted. In addition, the use of 1064 nm laser treatment could lead to changes in pure titanium discs that do not negatively affect cell proliferation. Further investigations of laser-assisted therapy are necessary to improve guidelines concerning the treatment of peri-implantitis. Clinical trial registration number: 2021-P2-098-01.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Animales , Porcinos , Temperatura , Titanio , Periimplantitis/radioterapia , Propiedades de Superficie , Rayos Láser , Fibroblastos
4.
Lasers Med Sci ; 32(5): 1173-1187, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28526914

RESUMEN

For predicting the temperature distribution within skin tissue in 980-nm laser-evoked potentials (LEPs) experiments, a five-layer finite element model (FEM-5) was constructed based on Pennes bio-heat conduction equation and the Lambert-Beer law. The prediction results of the FEM-5 model were verified by ex vivo pig skin and in vivo rat experiments. Thirty ex vivo pig skin samples were used to verify the temperature distribution predicted by the model. The output energy of the laser was 1.8, 3, and 4.4 J. The laser spot radius was 1 mm. The experiment time was 30 s. The laser stimulated the surface of the ex vivo pig skin beginning at 10 s and lasted for 40 ms. A thermocouple thermometer was used to measure the temperature of the surface and internal layers of the ex vivo pig skin, and the sampling frequency was set to 60 Hz. For the in vivo experiments, nine adult male Wistar rats weighing 180 ± 10 g were used to verify the prediction results of the model by tail-flick latency. The output energy of the laser was 1.4 and 2.08 J. The pulsed width was 40 ms. The laser spot radius was 1 mm. The Pearson product-moment correlation and Kruskal-Wallis test were used to analyze the correlation and the difference of data. The results of all experiments showed that the measured and predicted data had no significant difference (P > 0.05) and good correlation (r > 0.9). The safe laser output energy range (1.8-3 J) was also predicted. Using the FEM-5 model prediction, the effective pain depth could be accurately controlled, and the nociceptors could be selectively activated. The FEM-5 model can be extended to guide experimental research and clinical applications for humans.


Asunto(s)
Análisis de Elementos Finitos , Rayos Láser , Dolor/patología , Temperatura Cutánea/efectos de la radiación , Temperatura , Adulto , Animales , Humanos , Masculino , Ratas Wistar , Reproducibilidad de los Resultados , Piel/efectos de la radiación , Sus scrofa , Cola (estructura animal)
5.
Biomed Opt Express ; 6(4): 1451-63, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25909027

RESUMEN

For predicting pain stimulation effects and avoiding damage in 1940nm laser evoked potentials (LEPs) experiments, a 2-layer finite element model (FEM-2) was constructed. A series of experiments were conducted on ex-vivo pig skin pieces to verify temperature distribution predicted by this model. Various laser powers and beam radii were employed. Experimental data of time-dependent temperature responses in different sub-skin depths and space-dependent surface temperature was recorded by thermocouple instrument. By comparing with the experimental data and model results, FEM-2 model was proved to predict temperature distributions accurately. A logarithmic relationship between laser power density and temperature increment was revealed by the results. It is concluded that power density is an effective parameter to estimate pain and damage effect. The obtained results also indicated that the proposed FEM-2 model can be extended to predict pain and damage thresholds of human skin samples and thus contribute to LEPs study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...