Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030978

RESUMEN

BACKGROUND: Excessive body weight and obesity elevate the risk of chronic non-communicable diseases. The judicious application of the gut microbiome, encompassing both microorganisms and their derived compounds, holds considerable promise in the treatment of obesity. RESULTS: In this study, we showed that a cocktail of gut microbiota-derived metabolites, comprising indole 3-propionic acid (IPA), sodium butyrate (SB) and valeric acid (VA), alleviated various symptoms of obesity in both male and female mice subjected to a high-fat diet (HFD). The 16S ribosomal RNA (rRNA) sequencing revealed that administering the cocktail via oral gavage retained the gut microbiota composition in obese mice. Fecal microbiota transplantation using cocktail-treated mice as donors mitigated the obesity phenotype of HFD-fed mice. Transcriptomic sequencing analysis showed that the cocktail preserved the gene expression profile of hepatic tissues in obese mice, especially up-regulated the expression level of leptin receptor. Gene delivery via in vivo fluid dynamics further validated that the anti-obesity efficacy of the cocktail was dependent on leptin signaling at least partly. The cocktail also inhibited the expression of appetite stimulators in hypothalamus. Together, the metabolite cocktail combated adiposity by retaining the gut microbiota configuration and activating the hepatic leptin signaling pathway. CONCLUSIONS: Our findings provide a sophisticated regulatory network between the gut microbiome and host, and highlight a cocktail of gut microbiota-derived metabolites, including IPA, SB, and VA, might be a prospective intervention for anti-obesity in a preclinical setting. © 2024 Society of Chemical Industry.

2.
Biomed Pharmacother ; 165: 115157, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454593

RESUMEN

INTRODUCTION: Cancer patients commonly experience high levels of psychological stress, which poses significant risks to their well-being. Radiotherapy is a primary treatment modality for cancer; however, it often leads to intestinal injuries in these patients. Nevertheless, the impact of mental stress on radiotherapy-intertwined complications remains unclear. METHODS: To induce intestinal injury, we employed total abdominal irradiation in our experimental model. We conducted high-throughput sequencing to analyze the expression profile of miRNAs in the hippocampus. RESULTS: We observed that mice with depression exhibited more severe intestinal injuries following total abdominal irradiation. Remarkably, oral administration of Marasmius androsaceus not only alleviated the depressive phenotype but also mitigated radiation-induced intestinal toxicity. Notably, this radioprotective effect was not observed in mice without depression. Depression disrupted the hippocampal miRNA expression profile in mice subjected to local irradiation of the abdomen, leading to the accumulation of miR-139-5p and miR-184-3p in the hippocampus, serum, and small intestine tissues. However, treatment with Marasmius androsaceus reprogrammed the miRNA expression signature in mice with depression. Furthermore, intravenous injection of antagomirs targeting miR-139-5p and miR-184-3p ameliorated depression, up-regulated Spn expression, reduced radiation enteritis, and improved the integrity of the small intestine in irradiated mice. CONCLUSION: Our findings demonstrate the efficacy of Marasmius androsaceus, a small mushroom, in alleviating depression-aggravated intestinal toxicity following radiotherapy by reprogramming hippocampal miRNA expression.


Asunto(s)
Agaricales , Enfermedades Intestinales , MicroARNs , Traumatismos por Radiación , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Depresión/genética , Traumatismos por Radiación/genética , Hipocampo/metabolismo
3.
J Adv Res ; 46: 123-133, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35700918

RESUMEN

INTRODUCTION: With the mounting number of cancer survivors, the complications following cancer treatment become novel conundrums and starve for countermeasures. Intravenous immunoglobulin (IVIg) is a purified preparation for immune-deficient and autoimmune conditions. OBJECTIVES: Here, we investigated whether IVIg could be employed to fight against radiation injuries and explored the underlying mechanism. METHODS: Hematopoietic or gastrointestinal (GI) tract toxicity was induced by total body or abdominal local irradiation. High-throughput sequencing was performed to analyze the gut microbiota configurations and gene expression profile of small intestine. The untargeted metabolomics of gut microbiome was assessed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses. Hydrodynamic-based gene delivery was used to knockdown the target genes in vivo. RESULTS: Intravenous injection of IVIg protected against radiation-induced hematopoietic and GI tract toxicity in female mice but not in males. IVIg structured sex-characteristic gut microbiota configurations in abdominal irradiated mice. The irradiation enriched gut Lachnospiraceae in female mice but reduced those in males. IVIg injection combined with oral gavage of Lachnospiraceae or its metabolite hypoxanthine, alleviated radiation toxicity in male mice however, Lachnospiraceae or hypoxanthine alone failed to ameliorate the injuries. Abdominal local irradiation drove sex-distinct gene expression signatures in small intestine. Mechanistic investigation showed that replenishment of Lachnospiraceae or hypoxanthine offset abdominal radiation-reduced PLD1 expression in male mice. In females, irradiation elevated PLD1 expression. Deletion of PLD1 in GI tract of female mice erased the radioprotective effects of IVIg. CONCLUSION: IVIg battles against radiation injuries in a sex-specific, gut microbiome-dependent way through Lachnospiraceae/hypoxanthine/PLD1 axis. Our findings provide a sex-precise therapeutic avenue to improve the prognosis of cancer patients with radiotherapy in pre-clinical settings.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Traumatismos por Radiación , Ratones , Masculino , Femenino , Animales , Inmunoglobulinas Intravenosas/farmacología , Caracteres Sexuales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Traumatismos por Radiación/tratamiento farmacológico , Hipoxantinas/farmacología
4.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361976

RESUMEN

Social hierarchy governs the physiological and biochemical behaviors of animals. Intestinal radiation injuries are common complications connected with radiotherapy. However, it remains unclear whether social hierarchy impacts the development of radiation-induced intestinal toxicity. Dominant mice exhibited more serious intestinal toxicity following total abdominal irradiation compared with their subordinate counterparts, as judged by higher inflammatory status and lower epithelial integrity. Radiation-elicited changes in gut microbiota varied between dominant and subordinate mice, being more overt in mice of higher status. Deletion of gut microbes by using an antibiotic cocktail or restructuring of the gut microecology of dominant mice by using fecal microbiome from their subordinate companions erased the difference in radiogenic intestinal injuries. Lactobacillus murinus and Akkermansia muciniphila were both found to be potential probiotics for use against radiation toxicity in mouse models without social hierarchy. However, only Akkermansia muciniphila showed stable colonization in the digestive tracts of dominant mice, and significantly mitigated their intestinal radiation injuries. Our findings demonstrate that social hierarchy impacts the development of radiation-induced intestinal injuries, in a manner dependent on gut microbiota. The results also suggest that the gut microhabitats of hosts determine the colonization and efficacy of foreign probiotics. Thus, screening suitable microbial preparations based on the gut microecology of patients might be necessary in clinical application.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Traumatismos por Radiación , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Jerarquia Social , Probióticos/farmacología , Verrucomicrobia/fisiología , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA