Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514422

RESUMEN

Rubber composites are hyperelastic materials with obvious stress-softening effects during the cyclic loading-unloading process. In previous studies, it is hard to obtain the stress responses of rubber composites at arbitrary loading-unloading orders directly. In this paper, a hyper-pseudoelastic model is developed to characterize the cyclic stress-softening effect of rubber composites with a fixed stretch amplitude at arbitrary loading-unloading order. The theoretical relationship between strain energy function and cyclic loading-unloading order is correlated by the hyper-pseudoelastic model directly. Initially, the basic laws of the cyclic stress-softening effect of rubber composites are revealed based on the cyclic loading-unloading experiments. Then, a theoretical relationship between the strain energy evolution function and loading-unloading order, as well as the pseudoelastic theory, is developed. Additionally, the basic constraints that the strain energy evolution function must satisfy in the presence or absence of residual deformation effect are derived. Finally, the calibration process of material parameters in the hyper-pseudoelastic model is also presented. The validity of the hyper-pseudoelastic model is demonstrated via the comparisons to experimental data of rubber composites with different filler contents. This paper presents a theoretical model for characterizing the stress-softening effect of rubber composites during the cyclic loading-unloading process. The proposed theoretical model can accurately predict the evolution of the mechanical behavior of rubber composites with the number of loading-unloading cycles, which provides scientific guidance for predicting the durability properties and analyzing the fatigue performance of rubber composites.

2.
Biomolecules ; 13(1)2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36671422

RESUMEN

Women with diabetes mellitus are believed to have increased risk of developing breast cancer and lower life expectancies. This study aims to depict the association between the CISD1, the co-expressed genes, and diabetes mellitus to offer potential therapeutic targets for further mechanical research. The TCGA-BRCA RNAseq data is acquired. All the data and analyzed using R packages and web-based bioinformatics tools. CISD1 gene expression was evaluated between tumor bulk and adjacent tissue. Immune cell infiltration evaluation was performed. CISD1 expressed significantly higher in tumor tissue than that of the normal tissue, indicating poor overall survival rates. High expression level of CISD1 in tumor shows less pDC and NK cells penetration. There are 138 genes shared between CISD1 co-expressed gene pool in BRCA and diabetes mellitus related genes using "diabetes" as the term for text mining. These shared genes enrich in "cell cycle" and other pathways. MCODE analysis demonstrates that p53-independent G1/S DNA damage checkpoint, p53-independent DNA damage response, and ubiquitin mediated degradation of phosphorylated cdc25A are top-ranked than other terms. CISD1 and co-expressed genes, especially shared ones with diabetes mellitus, can be the focused genes considered when addressing clinical problems in breast cancer with a diabetes mellitus background.


Asunto(s)
Neoplasias de la Mama , Diabetes Mellitus , Femenino , Humanos , Biomarcadores , Neoplasias de la Mama/genética , Pronóstico , Proteína p53 Supresora de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...