Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 277: 126389, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852346

RESUMEN

Ammonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NH4Cl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells. Subsequently, single-cell Raman spectroscopy analysis revealed that ARG2 KD cells exhibited profound metabolic shifts, including changes in protein, nucleic acids, lipid and sugar levels, showing the adjusting role of ARG2 in the balance of carbohydrate and nitrogen metabolism. Furthermore, the upregulated responses of various amino acids, such as glutamine, arginine, alanine, glutamic acid, glycine, histidine, phenylalanine and valine, in WT cells after NH4Cl treatment diminished in ARG2 KD cells except for the decrease in aspartic acid, indicating a switching effect of ARG2 in nitrogen metabolism under ammonia stress. This study highlights ARG2's essential role in ammonia detoxification and emphasizes ARG2's protective function and its importance in metabolism, shedding light on the adaptive mechanisms fish cells deploy against high ammonia environments. These insights contribute to deep understanding of aquatic organisms' molecular responses to environmental ammonia pollution, offering potential strategies for their protection.


Asunto(s)
Amoníaco , Arginasa , Nitrógeno , Espectrometría Raman , Animales , Amoníaco/metabolismo , Nitrógeno/metabolismo , Espectrometría Raman/métodos , Arginasa/metabolismo , Análisis de la Célula Individual , Línea Celular
2.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636736

RESUMEN

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Asunto(s)
Aeromonas hydrophila , Arginasa , Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Bacterias Gramnegativas , Mitocondrias , Óxido Nítrico , Animales , Aeromonas hydrophila/fisiología , Arginasa/genética , Arginasa/metabolismo , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Óxido Nítrico/metabolismo , Carpas/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Arginina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA