Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 123: 155252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056145

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has high morbidity and mortality, which is manifested by inflammation and apoptosis. Effective treatment methods for AKI are currently lacking. OBJECTIVE: This study demonstrated the protecting effects of Madecassoside (MA) in the cisplatin- and hypoxia-reoxygenation-induced renal tubular epithelial cells in vitro and AKI mice in vivo. METHODS: In vivo AKI mouse models were established by inducing them with cisplatin and renal ischemia-reperfusion. In vitro injury models of mouse renal tubular epithelial cells were established by inducing them with cisplatin and hypoxia and reoxygenation, respectively. The mechanism of MA effects was further explored using molecular docking and RNA-sequencing. RESULTS: MA could significantly reduce kidney injury in the cisplatin-and renal ischemia-reperfusion (IRI)-induced AKI. Further validation in the two cellular models also showed that MA had protect effects. MA can alleviate AKI in vitro and in vivo by inhibiting inflammation, cell apoptosis, and oxidative stress. MA exhibited high permeability across the Caco-2 cell, can enter cells directly. Through RNA-seq and molecular docking analysis, this study further demonstrated that MA inhibits its activity by directly binding to JNK kinase, thereby inhibiting c-JUN mediated cell apoptosis and improving AKI. In addition, MA has better renal protective effects compared to curcumin and JNK inhibitor SP600125. CONCLUSION: The results demonstrate that MA might be a potential drug for the treatment of AKI and act through the JNK/c-JUN signaling pathway.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Triterpenos , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Células CACO-2 , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/inducido químicamente , Apoptosis , Riñón , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia , Inflamación/metabolismo , Hipoxia , Ratones Endogámicos C57BL
2.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
3.
Biomed Pharmacother ; 165: 115166, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37473682

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Nefritis Lúpica , Humanos , Factor de Transcripción STAT3/metabolismo , Riñón/patología , Nefritis Lúpica/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/patología
4.
Br J Pharmacol ; 180(20): 2641-2660, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37248964

RESUMEN

BACKGROUND AND PURPOSE: Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS: Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS: Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Humanos , Cisplatino/farmacología , Necroptosis , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/metabolismo , Proteínas Quinasas/metabolismo , Ratones Noqueados , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores
5.
Kidney Int ; 102(4): 828-844, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35752325

RESUMEN

The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI, possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Inhibidor Tisular de Metaloproteinasa-2 , Adenosina Difosfato Ribosa , Animales , Biomarcadores , Cisplatino/toxicidad , Inflamación , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Lipopolisacáridos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/metabolismo
6.
Acta Pharmacol Sin ; 43(2): 330-341, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33833407

RESUMEN

Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms. We established ischemic and nephrotoxic AKI mouse models caused by ischemia-reperfusion (I/R) and cisplatin, respectively. We conducted proteomic and immunohistochemical analyses and found that SFN expression levels were significantly increased in AKI patients, cisplatin- or I/R-induced AKI mice. In cisplatin- or hypoxia/reoxygenation (H/R)-treated human proximal tubule epithelial cells (HK2), we showed that knockdown of SFN significantly reduced the expression of kidney injury marker Kim-1, attenuated programmed cell death and inflammatory response. Knockdown of SFN also significantly alleviated the decline of renal function and histological damage in cisplatin-caused AKI mice in vivo. We further revealed that SFN bound to RIPK3, a key signaling modulator in necroptosis, to induce necroptosis and the subsequent inflammation in cisplatin- or H/R-treated HK2 cells. Overexpression of SFN increased Kim-1 protein levels in cisplatin-treated MTEC cells, which was suppressed by RIPK3 knockout. Taken together, our results demonstrate that SFN that enhances cisplatin- or I/R-caused programmed cell death and inflammation via interacting with RIPK3 may serve as a promising therapeutic target for AKI treatment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Lesión Renal Aguda/metabolismo , Isquemia/metabolismo , Enfermedades Renales/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Túbulos Renales/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Kidney Dis (Basel) ; 7(5): 372-390, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34604344

RESUMEN

BACKGROUND: Transforming growth factor-ß (TGF-ß)/Smad signaling is the central mediator in renal fibrosis, yet its functional role in acute kidney injury (AKI) is not fully understood. Recent evidence showed that TGF-ß/Smad3 may be involved in the pathogenesis of AKI, but its functional role and mechanism of action in cisplatin-induced AKI are unclear. OBJECTIVES: Demonstrating that Smad3 may play certain roles in cisplatin nephropathy due to its potential effect on programmed cell death and inflammation. METHODS: Here, we established a cisplatin-induced AKI mouse model with Smad3 knockout mice and created stable in vitro models with Smad3 knockdown tubular epithelial cells. In addition, we tested the potential of Smad3-targeted therapy using 2 in vivo protocols - lentivirus-mediated Smad3 silencing in vivo and use of naringenin, a monomer used in traditional Chinese medicine and a natural inhibitor of Smad3. RESULTS: Disruption of Smad3 attenuated cisplatin-induced kidney injury, inflammation, and NADPH oxidase 4-dependent oxidative stress. We found that Smad3-targeted therapy protected against loss of renal function and alleviated apoptosis, RIPK-mediated necroptosis, renal inflammation, and oxidative stress in cisplatin nephropathy. CONCLUSIONS: These findings show that Smad3 promotes cisplatin-induced AKI and Smad3-targeted therapy protects against this pathological process. These findings have substantial clinical relevance, as they suggest a therapeutic target for AKI.

8.
Phytomedicine ; 85: 153541, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33773190

RESUMEN

BACKGROUND: Acute kidney injury (AKI), characterised by excessive inflammatory cell recruitment and programmed cell death, has a high morbidity and mortality; however, effective and specific therapies for AKI are still lacking. OBJECTIVE: This study aimed to evaluate the renoprotective effects of gypenoside XLIX (Gyp XLIX) in AKI. METHODS: The protective effects of Gyp XLIX were tested in two AKI mouse models established using male C57BL/6 mice (aged 6-8 weeks) by a single intraperitoneal injection of cisplatin (20 mg/kg) or renal ischemia-reperfusion for 40 min. Gyp XLIX was administered intraperitoneally before cisplatin administration or renal ischemia-reperfusion. Renal function, tubular injury, renal inflammation and programmed cell death were evaluated. In addition, the renoprotective effects of Gyp XLIX were also evaluated in cisplatin- or hypoxia-treated tubular epithelial cells. The mechanisms underlying these effects were then explored using RNA sequencing. RESULTS: In vivo, Gyp XLIX substantially suppressed the increase in serum creatinine and blood urea nitrogen levels. Moreover, tubular damage was alleviated by Gyp XLIX as shown by periodic acid-Schiff staining, electron microscopy and molecular analysis of KIM-1. Consistently, we found that Gyp XLIX suppressed renal necroptosis though the RIPK1/RIPK3/MLKL pathway. The anti-inflammatory and antinecroptotic effects were further confirmed in vitro. Mechanistically, RNA sequencing showed that Gyp XLIX markedly suppressed the levels of IGF binding protein 7 (IGFBP7). Co-immunoprecipitation and western blot analysis further showed that Gyp XLIX reduced the binding of IGFBP7 to IGF1 receptor (IGF1R). Additionally, picropodophyllin, an inhibitor of IGF1R, abrogated the therapeutic effects of Gyp XLIX on cisplatin-induced renal cell injury; this finding indicated that Gyp XLIX may function by activating IGF1R-mediated downstream signalling Additionally, we also detected the metabolic distribution of Gyp XLIX after injection; Gyp XLIX had a high concentration in the kidney and exhibited a long retention time. These findings may shed light on the application of Gyp XLIX for AKI treatment clinically. CONCLUSION: Gyp XLIX may serve as a potential therapeutic agent for AKI treatment via IGFBP7/ IGF1R-dependent mechanisms.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Sustancias Protectoras/farmacología , Receptor IGF Tipo 1/metabolismo , Saponinas/farmacología , Lesión Renal Aguda/inducido químicamente , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cisplatino , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Necroptosis
9.
Pharmacol Res ; 163: 105286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157234

RESUMEN

Alcohol consumption is one of the risk factors for kidney injury. The underlying mechanism of alcohol-induced kidney injury remains largely unknown. We previously found that the kidney in a mouse model of alcoholic kidney injury had severe inflammation. In this study, we found that the administration of alcohol was associated with the activation of NLRP3 inflammasomes and NF-κB signaling, and the production of pro-inflammatory cytokines. Whole-genome methylation sequencing (WGBS) showed that the DNA encoding fat mass and obesity-associated protein (FTO) was significantly methylated in the alcoholic kidney. This finding was confirmed with the bisulfite sequencing (BSP), which showed that alcohol increased DNA methylation of FTO in the kidney. Furthermore, inhibition of DNA methyltransferases (DNMTs) by 5-azacytidine (5-aza) reversed alcohol-induced kidney injury and decreased the mRNA and protein levels of FTO. Importantly, we found that FTO, the m6A demethylase, epigenetically modified peroxisome proliferator activated receptor-α (PPAR-α) in a YTH domain family 2 (YTHDF2)-dependent manner, which resulted in inflammation in alcoholic kidney injury models. In conclusion, our findings indicate that alcohol increases the methylation of PPAR-α m6A by FTO-mediated YTHDF2 epigenetic modification, which ultimately leads to the activation of NLRP3 inflammasomes and NF-κB-driven renal inflammation in the kidney. These findings may provide novel strategies for preventing and treating alcoholic kidney diseases.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Metilación de ADN , Etanol , Enfermedades Renales/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular , Citocinas/genética , Modelos Animales de Enfermedad , Humanos , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Masculino , Metiltransferasas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas de Unión al ARN/genética
10.
Biochem Pharmacol ; 180: 114132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622666

RESUMEN

Acute kidney injury (AKI), characterized by a rapid decline in renal function, is triggered by an acute inflammatory response that leads to kidney damage. An effective treatment for AKI is lacking. Using in vitro and in vivo AKI models, our laboratory has identified a series of anti-inflammatory molecules and their derivatives. In the current study, we identified the protective role of rutaecarpine (Ru) on renal tubules. We obtained a series of 3-aromatic sulphonamide-substituted Ru derivatives exhibiting enhanced renoprotective and anti-inflammatory function. We identified Compound-6c(Cpd-6c) as having the best activity and examined its protective effect against cisplatin nephropathy both in vivo and in vitro in cisplatin-stimulated tubular epithelial cells (TECs). Our results showed that Cpd-6c restored renal function more effectively than Ru, as evidenced by reduced blood urea nitrogen and serum creatinine levels in mice. Cpd-6c alleviated tubular injury, as shown by PAS staining and molecular analysis of kidney injury molecule-1 (KIM-1), with both prevention and treatment protocols in cisplatin-treated mice. Moreover, Cpd-6c decreased kidney inflammation, oxidative stress and programmed cell death. These results have also been confirmed in cisplatin-treated TECs. Using web-prediction algorithms, molecular docking, and cellular thermal shift assay (CETSA), we identified phosphodiesterase 4B (PDE4B) as a Cpd-6c target. In addition, we firstly found that PDE4B was up-regulated significantly in the serum of AKI patients. After identifying the function of PDE4B in cisplatin-treated tubular epithelial cells by siRNA transfection or PDE4 inhibitor rolipram, we showed that Cpd-6c treatment did not protect against cisplatin-induced injury in PDE4B knockdown TECs, thus indicating that Cpd-6c exerts its renoprotective and anti-oxidative effects via the PDE4B-dependent pathway. Collectively, Cpd-6c might serve as a potential therapeutic agent for AKI and PDE4B may be highly involved in the initiation and progression of AKI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antiinflamatorios/farmacología , Cisplatino/efectos adversos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Alcaloides Indólicos/farmacología , Túbulos Renales/efectos de los fármacos , Quinazolinas/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/patología , Animales , Antiinflamatorios/química , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Línea Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/patología , Humanos , Alcaloides Indólicos/química , Túbulos Renales/enzimología , Túbulos Renales/patología , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Unión Proteica , Quinazolinas/química
11.
J Cell Mol Med ; 24(12): 6523-6533, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32333642

RESUMEN

Circular RNA (circRNA) is a newly described type of non-coding RNA. Active research is greatly enriching the current understanding of the expression and role of circRNA, and a large amount of evidence has implicated circRNA in the pathogenesis of certain renal diseases, such as renal cell carcinoma, acute kidney injury, diabetic nephropathy and lupus nephritis. Studies have found evidence that circRNAs regulate programmed cell death, invasion, and metastasis and serve as biomarkers in renal diseases. Recently, circRNAs were identified in exosomes secreted by the kidneys. Nevertheless, the function of circRNA in renal diseases remains ambiguous. Given that circRNAs are regulators of gene expression, they may be involved in the pathology of multiple renal diseases. Additionally, emerging evidence is showing that circulating circRNAs may serve as novel biomarkers for renal disease. In this review, we have summarized the identification, biogenesis, degradation, and functions of circRNA and have evaluated the roles of circRNA in renal diseases.


Asunto(s)
Enfermedades Renales/genética , ARN Circular/genética , Biomarcadores/metabolismo , Humanos , Inflamación/patología , Modelos Biológicos , ARN Circular/metabolismo
12.
Reprod Fertil Dev ; 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25786351

RESUMEN

Our previous study showed that the chemokine regulated upon activation normal T-cell expressed and secreted (RANTES) originating from the mouse epididymis bound to the midpiece of luminal spermatozoa. The present study was undertaken to investigate the association between RANTES and epididymal spermatozoa and to determine whether the association is mediated by the RANTES receptors CCR1, CCR3 or CCR5. The use of reverse transcription polymerase chain reaction (RT-PCR), immunohistochemical staining and immunofluorescent staining demonstrated that RANTES secreted by apical and narrow cells of mouse epididymal ducts was associated with luminal spermatozoa. Flow cytometric analysis and immunofluorescent labelling revealed that the association between RANTES and spermatozoa of different regions weakened gradually as the spermatozoa moved along the epididymis. Moreover, CCR1, CCR3 and CCR5 were expressed in epididymal spermatozoa and located on the head of epididymal spermatozoa, while RANTES was generally located at the midpiece. In conclusion, RANTES and its receptors were not in the same sperm location, suggesting that RANTES binding to mouse epididymal spermatozoa is independent of CCR1, CCR3 and CCR5.

13.
Sheng Li Ke Xue Jin Zhan ; 45(6): 410-5, 2014 Dec.
Artículo en Chino | MEDLINE | ID: mdl-25872345

RESUMEN

Estrogen receptors (ERs), including two sub-types ERα and ERß, belong to the steroid hormone superfamily of nuclear receptors. ERα distributes in the male reproductive system and plays a crucial role in the regulation of male reproduction through estrogen-dependent and -independent ways. In this article, we mainly reviewed the molecular structure, mode of action and location of ERα in the male reproductive system, and explored the mechanism of ERα in regulating the male reproductive system by analyzing different animal models of disrupted ERα.


Asunto(s)
Reproducción , Animales , Receptor alfa de Estrógeno , Genitales Masculinos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...