Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2310881120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748065

RESUMEN

Cytonuclear disruption may accompany allopolyploid evolution as a consequence of the merger of different nuclear genomes in a cellular environment having only one set of progenitor organellar genomes. One path to reconcile potential cytonuclear mismatch is biased expression for maternal gene duplicates (homoeologs) encoding proteins that target to plastids and/or mitochondria. Assessment of this transcriptional form of cytonuclear coevolution at the level of individual cells or cell types remains unexplored. Using single-cell (sc-) and single-nucleus (sn-) RNAseq data from eight tissues in three allopolyploid species, we characterized cell type-specific variations of cytonuclear coevolutionary homoeologous expression and demonstrated the temporal dynamics of expression patterns across development stages during cotton fiber development. Our results provide unique insights into transcriptional cytonuclear coevolution in plant allopolyploids at the single-cell level.


Asunto(s)
Mitocondrias , Plastidios , Mitocondrias/genética , Diferenciación Celular , Núcleo Solitario
2.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260528

RESUMEN

Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.


Asunto(s)
Cerveza , Conversión Génica , Genoma , Núcleo Celular/genética
3.
Proc Natl Acad Sci U S A ; 119(34): e2200106119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969751

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) has long been studied from many perspectives. As a multisubunit (large subunits [LSUs] and small subunits[SSUs]) protein encoded by genes residing in the chloroplast (rbcL) and nuclear (rbcS) genomes, RuBisCo also is a model for cytonuclear coevolution following allopolyploid speciation in plants. Here, we studied the genomic and transcriptional cytonuclear coordination of auxiliary chaperonin and chaperones that facilitate RuBisCo biogenesis across multiple natural and artificially synthesized plant allopolyploids. We found similar genomic and transcriptional cytonuclear responses, including respective paternal-to-maternal conversions and maternal homeologous biased expression, in chaperonin/chaperon-assisted folding and assembly of RuBisCo in different allopolyploids. One observation is about the temporally attenuated genomic and transcriptional cytonuclear evolutionary responses during early folding and later assembly process of RuBisCo biogenesis, which were established by long-term evolution and immediate onset of allopolyploidy, respectively. Our study not only points to the potential widespread and hitherto unrecognized features of cytonuclear evolution but also bears implications for the structural interaction interface between LSU and Cpn60 chaperonin and the functioning stage of the Raf2 chaperone.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa , Núcleo Celular/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
4.
J Hazard Mater ; 415: 125614, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33725553

RESUMEN

As emerging contaminants, microplastics (mPS, <5 mm) have been reported to adversely affect the plant growth; however, the mechanisms of mPS-induced growth limitation are rarely known. Here, it was found that the plastic particles were absorbed and accumulated in barley plants, which limited the development of rootlets. The mPS-treated plants had significantly higher concentrations of H2O2 and O2- in roots than the control. The mPS significantly increased the activities of dehydroascorbate reductase, glutathione reductase, ADP-Glucose pyrophosphorylase, fructokinase and phosphofructokinase, while decreased the activities of cell wall peroxidase, vacuolar invertase, sucrose synthase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and phosphoglucoisomerase in roots. The changes in activities of carbohydrate and ROS metabolism enzymes in leaves showed a different trend from that in roots. The mPS plants possessed a higher trans-zeatin concentration while lower concentrations of indole-3-acetic acid, indole-3-butyric acid and dihydrozeatin than the control plants in leaves. However, the phytohormone changes in roots were distinct from those in leaves under mPS. In addition, significant correlations between enzyme activities and phytohormone concentrations were found. It was suggested that the phytohormone regulatory network plays key roles in regulating the activities of key enzymes involved in carbohydrate and ROS metabolisms in response to mPS in barley.


Asunto(s)
Hordeum , Metabolismo de los Hidratos de Carbono , Homeostasis , Peróxido de Hidrógeno , Microplásticos , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Plásticos , Poliestirenos
5.
Theranostics ; 8(21): 5960-5971, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613274

RESUMEN

Islet α-cell dysfunction has been shown to contribute to type 2 diabetes; however, whether islet α-cell inflammation is involved in the occurrence of pancreatitis is largely unknown. The aims of this study were to investigate how NF-κB inducing kinase (NIK) regulates pancreatic α-cell function, both in vitro and in vivo, and to assess how islet α-cell inflammation induced by NIK affects the development of pancreatitis. Methods: We utilized adenovirus-mediated NIK overexpression, ELISA, qPCR, RNA-seq, and Western blot analyses to study the role of NIK in islet α cells in vitro. Islet α-cell-specific NIK overexpressing (α-NIK-OE) mice were generated, and pancreatic α/ß-cell function and the occurrence of pancreatitis in these mice were assessed via ELISA, qPCR, and immunohistochemical analyses. Results: The LTßR/noncanonical NF-κB signaling pathway is present in islet α cells. Overexpression of NIK in αTC1-6 cells induces inflammation and cell death, contributing to a decrease in the expression and secretion of glucagon. Additionally, α-cell specific overexpression of NIK (α-NIK-OE) results in α-cell death, lower serum glucagon levels, and hypoglycemia in mice. Strikingly, α-NIK-OE mice also display a reduced ß-cell mass, growth retardation, pancreatitis, and postnatal death. Conclusions: Islet α-cell specific overexpression of NIK results in islet α-cell dysfunction and causes islet ß-cell death and pancreatitis, which are most likely due to paracrine secretion of cytokines and chemokines from islet α cells, thus leading to hypoglycemia, growth retardation, and postnatal death in mice.


Asunto(s)
Muerte , Células Secretoras de Glucagón/patología , Trastornos del Crecimiento/fisiopatología , Hipoglucemia/fisiopatología , Células Secretoras de Insulina/patología , Pancreatitis/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Células Secretoras de Glucagón/efectos de los fármacos , Trastornos del Crecimiento/complicaciones , Trastornos del Crecimiento/patología , Hipoglucemia/complicaciones , Hipoglucemia/patología , Inmunohistoquímica , Ratones , Pancreatitis/complicaciones , Pancreatitis/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...