Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290676

RESUMEN

The objective of this study was to investigate the effects of onion and apple functional ingredients in homozygous (fa/fa) obese Zucker rats. Rodents were fed three diets: standard diet [obese control (OC) group], standard diet containing 10% onion [obese onion 10% (OO) group] and standard diet containing 10% apple [obese apple 10% (OA) group] for 8 weeks. Food intake and body weight gain were higher in obese than in lean rats. Food efficiency was lower in OO and AO groups compared with OC group. Within the obese groups, total cholesterol, LDL-cholesterol, triacylglycerols, glucose, insulin and triglyceride-glucose index were lower in OO group than in OC group, and HDL-cholesterol was higher in OO group than in OC group. In general, antioxidant activity (ABTS•+ and FRAP), antioxidant enzyme activities (CAT, SOD, GPx), GSH/GSSG ratio, nitrate/nitrite and GLP-1 increased in OO and OA groups compared with OC. Oxidative stress biomarkers, namely protein carbonyls, 8-hydroxy-2'-deoxyguanosine, 8-epi-prostaglandin F2α, inflammatory and vascular injury biomarkers (PAI-1, TIMP-1, VEGF, sICAM-1, sE-Selectin, MCP-1) and leptin, were lower in OO and OA groups than in OC group. Endothelial impairment was partially reversed, and superoxide content and gene expression of NLRP3, NFKß1 and COX2 decreased, in OO and OA groups with respect to OC group. The study demonstrates that high pressure-processed onion and apple functional ingredients administration to obese Zucker rats causes beneficial effects on metabolic health, in particular through improving food efficiency ratio; exerting pronounced lipid-lowering effects; reducing glycemia, insulinemia, and biomarkers of hepatic injury (ALT, AST); improving antioxidant, oxidative stress, inflammatory and vascular injury biomarkers, metabolic hormones, and endothelial function; and decreasing proinflammatory gene expression of NLRP3, NFKß1 and COX2.

2.
Biochem Pharmacol ; 201: 115078, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551917

RESUMEN

Endothelial cell senescence contributes to chronic inflammation and endothelial dysfunction, while favoring cardiovascular disorders and frailty. Senescent cells acquire a pro-inflammatory secretory phenotype that further propagates inflammation and senescence to neighboring cells. Cell senescence can be provoked by plethora of stressors, including inflammatory molecules and chemotherapeutic drugs. Doxorubicin (Doxo) is a powerful anthracycline anticancer drug whose clinical application is constrained by a dose-limiting cardiovascular toxicity. We here investigated whether cell senescence can contribute to the vascular damage elicited by Doxo. In human umbilical vein endothelial cells (HUVEC) cultures, Doxo (10-100 nM) increased the number of SA-ß-gal positive cells and the levels of γH2AX, p21 and p53, used as markers of senescence. Moreover, we identified Doxo-induced senescence to be mediated by the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome, a key player of the immune innate system capable of releasing interleukin (IL)-1ß. In fact, IL-1ß itself mimicked the stimulatory action of Doxo on both NLRP3 activation and cellular senescence, while the pharmacological blockade of IL-1 receptors markedly attenuated the pro-senescence effects of Doxo. In search of additional pharmacological strategies to attenuate Doxo-induced endothelial senescence, we identified resolvin E1 (RvE1), an endogenous pro-resolving mediator, as capable of reducing cell senescence induced by both Doxo and IL-1ß by interfering with the increased expression of pP65, NLRP3, and pro-IL-1ß proteins and with the formation of active NLRP3 inflammasome complexes. Overall, RvE1 and the blockade of the NLRP3 inflammasome-IL-1ß axis may offer a novel therapeutic approach against Doxo-induced cardiovascular toxicity and subsequent sequelae.


Asunto(s)
Doxorrubicina , Ácido Eicosapentaenoico , Células Endoteliales de la Vena Umbilical Humana , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Interacciones Farmacológicas , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Hypertension ; 79(7): 1361-1373, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35477273

RESUMEN

BACKGROUND: Abnormal accumulation of senescent cells in the vessel wall leads to a compromised vascular function contributing to vascular aging. Soluble DPP4 (dipeptidyl peptidase 4; sDPP4) secretion from visceral adipose tissue is enhanced in obesity, now considered a progeric condition. sDPP4 triggers vascular deleterious effects, albeit its contribution to vascular aging is unknown. We aimed to explore sDPP4 involvement in vascular aging, unraveling the molecular pathway by which sDPP4 acts on the endothelium. METHODS: Human endothelial cell senescence was assessed by senescence-associated ß-galactosidase assay, visualization of DNA damage, and expression of prosenescent markers, whereas vascular function was evaluated by myography over human dissected microvessels. In visceral adipose tissue biopsies from a cohort of obese patients, we explored several age-related parameters in vitro and ex vivo. RESULTS: By a common mechanism, sDPP4 triggers endothelial cell senescence and endothelial dysfunction in isolated human resistance arteries. sDPP4 activates the metabotropic receptor PAR2 (protease-activated receptor 2), COX-2 (cyclooxygenase 2) activity, and the production of TXA2 (thromboxane A2) acting over TP (thromboxane receptor) receptors (PAR2-COX-2-TP axis), leading to NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3) inflammasome activation. Obese patients exhibited impaired microarterial functionality in comparison to control nonobese counterparts. Importantly, endothelial dysfunction in obese patients positively correlated with greater expression of DPP4, prosenescent, and proinflammatory markers in visceral adipose tissue nearby the resistance arteries. Moreover, when DPP4 activity or sDPP4-induced prosenescent mechanism was blocked, endothelial dysfunction was restored back to levels of healthy subjects. CONCLUSIONS: These results reveal sDPP4 as a relevant mediator in early vascular aging and highlight its capacity activating main proinflammatory mediators in the endothelium that might be pharmacologically tackled.


Asunto(s)
Ciclooxigenasa 2 , Dipeptidil Peptidasa 4 , Inflamasomas , Biomarcadores/metabolismo , Senescencia Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Células Endoteliales/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamasomas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores de Tromboxanos/genética , Receptores de Tromboxanos/metabolismo
4.
Aging Dis ; 13(1): 284-297, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35111374

RESUMEN

The clinical relevance of IL-1ß in chronic inflammation underlying atherosclerosis has been reinforced by recent evidence associating pharmacological inhibition of the cytokine with lower cardiovascular risk. Previously, we have demonstrated a direct involvement of IL-1ß in endothelial senescence. Therefore, this can be a key mechanism contributing to the sterile inflammatory milieu associated with aging, termed inflammaging. In the present study, we have evaluated whether a positive feedback of IL-1ß in the NLRP3 inflammasome via NF-κB could promote human endothelial senescence in vitro and murine endothelial dysfunction in vivo. Our results indicate that the NLRP3 inflammasome is pivotal in mediating the detrimental effects of IL-1ß, showing that auto-activation is a crucial feature boosting endothelial cell senescence in vitro, which is paralleled by vascular dysfunction in vivo. Hence, the inhibitor of NLRP3 inflammasome assembly, MCC 950, was able to disrupt the aforementioned positive loop, thus alleviating inflammation, cell senescence and vascular dysfunction. Besides, we explored alternative NLRP3 inflammasome inhibitory agents such as the RAS heptapeptide Ang-(1-7) and the anti-aging protein klotho, both of which demonstrated protective effects in vitro and in vivo. Altogether, our results highlight a fundamental role for the hereby described NLRP3 inflammasome/IL-1ß positive feedback loop in stress-induced inflammaging and the associated vascular dysfunction, additionally providing evidence of a potential therapeutic use of MCC 950, Ang-(1-7) and recombinant klotho to block this loop and its deleterious effects.

5.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943132

RESUMEN

The liver's high metabolic activity and detoxification functions generate reactive oxygen species, mainly through oxidative phosphorylation in the mitochondria of hepatocytes. In contrast, it also has a potent antioxidant mechanism for counterbalancing the oxidant's effect and relieving oxidative stress. PAS kinase (PASK) is a serine/threonine kinase containing an N-terminal Per-Arnt-Sim (PAS) domain, able to detect redox state. During fasting/feeding changes, PASK regulates the expression and activation of critical liver proteins involved in carbohydrate and lipid metabolism and mitochondrial biogenesis. Interestingly, the functional inactivation of PASK prevents the development of a high-fat diet (HFD)-induced obesity and diabetes. In addition, PASK deficiency alters the activity of other nutrient sensors, such as the AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). In addition to the expression and subcellular localization of nicotinamide-dependent histone deacetylases (SIRTs). This review focuses on the relationship between oxidative stress, PASK, and other nutrient sensors, updating the limited knowledge on the role of PASK in the antioxidant response. We also comment on glucagon-like peptide 1 (GLP-1) and its collaboration with PASK in preventing the damage associated with hepatic oxidative stress. The current knowledge would suggest that PASK inhibition and/or exendin-4 treatment, especially under fasting conditions, could ameliorate disorders associated with excess oxidative stress.

6.
Nutrients ; 13(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34444712

RESUMEN

Glucagon-like peptide 1 (GLP-1) and PAS kinase (PASK) control glucose and energy homeostasis according to nutritional status. Thus, both glucose availability and GLP-1 lead to hepatic glycogen synthesis or degradation. We used a murine model to discover whether PASK mediates the effect of exendin-4 (GLP-1 analogue) in the adaptation of hepatic glycogen metabolism to nutritional status. The results indicate that both exendin-4 and fasting block the Pask expression, and PASK deficiency disrupts the physiological levels of blood GLP1 and the expression of hepatic GLP1 receptors after fasting. Under a non-fasted state, exendin-4 treatment blocks AKT activation, whereby Glucokinase and Sterol Regulatory Element-Binding Protein-1c (Srebp1c) expressions were inhibited. Furthermore, the expression of certain lipogenic genes was impaired, while increasing Glucose Transporter 2 (GLUT2) and Glycogen Synthase (GYS). Moreover, exendin-4 treatment under fasted conditions avoided Glucose 6-Phosphatase (G6pase) expression, while maintaining high GYS and its activation state. These results lead to an abnormal glycogen accumulation in the liver under fasting, both in PASK-deficient mice and in exendin-4 treated wild-type mice. In short, exendin-4 and PASK both regulate glucose transport and glycogen storage, and some of the exendin-4 effects could therefore be due to the blocking of the Pask expression.


Asunto(s)
Adaptación Fisiológica , Ayuno , Glucógeno Hepático/metabolismo , Hígado/metabolismo , Estado Nutricional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Exenatida/metabolismo , Exenatida/farmacología , Péptido 1 Similar al Glucagón/sangre , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucoquinasa/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación hacia Arriba , Pérdida de Peso
7.
Aging (Albany NY) ; 12(3): 2275-2301, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974316

RESUMEN

Several signaling pathways may be affected during aging. All are regulated by nutrient levels leading to a decline in mitochondrial function and autophagy and to an increase in oxidative stress. PAS Domain Kinase (PASK) is a nutrient and bioenergetic sensor. We have previously found that PASK plays a role in the control of hepatic metabolic balance and mitochondrial homeostasis. To investigate PASK's role in hepatic oxidative stress during aging, we analyzed the mitochondrial function, glucose tolerance, insulin resistance, and lipid-related parameters in aged PASK-deficient mice. Hepatic Pask mRNA decreased in step with aging, being undetectable in aged wild-type (WT) mice. Aged PASK-deficient mice recorded lower levels of ROS/RNS compared to aged WT. The regulators of mitochondrial biogenesis, PGC1a, SIRT1 and NRF2, decreased in aged WT, while aged PASK-deficient mice recorded a higher expression of NRF2, GCLm and HO1 proteins and CS activity under fasted conditions. Additionally, aged PASK-deficient mice recorded an overexpression of the longevity gene FoxO3a, and maintained elevated PCNA protein, suggesting that hepatic cell repair mechanisms might be functional. PASK-deficient mice have better insulin sensitivity and no glucose intolerance, as confirmed by a normal HOMA-IR index. PASK may be a good target for reducing damage during aging.


Asunto(s)
Envejecimiento/genética , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/metabolismo , Animales , Proteína Forkhead Box O3/genética , Regulación del Desarrollo de la Expresión Génica , Intolerancia a la Glucosa/genética , Glutamato-Cisteína Ligasa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Resistencia a la Insulina/genética , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo
8.
BMC Plant Biol ; 18(1): 376, 2018 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-30594125

RESUMEN

BACKGROUND: Protein kinases play a key role in plant cell homeostasis and the activation of defense mechanisms. Partial resistance to fungi in plants is interesting because of its durability. However, the variable number of minor loci associated with this type of resistance hampers the reliable identification of the full range of genes involved. The present work reports the technique of protein kinase (PK)-profiling for the identification of the PK genes induced in the partially resistant oats line MN841801-1 following exposure to the fungus Puccinia coronata. This is the first time this technique has been used with cDNA (complementary DNA) from a suppression subtractive hybridization library obtained after the hybridization of cDNAs from inoculated and mock-inoculated plants. RESULTS: Six degenerate primers based on the conserved domains of protein kinases were used in a PK-profiling assay including cDNA from mock-inoculated leaves and subtracted cDNA. Of the 75.7% of sequences cloned and sequenced that showed significant similarity to resistance genes, 76% were found to code for PKs. Translation and ClustalW2 alignment of each sequence cloned with the complete sequences of the most similar B. distachyon PKs allowed those of the partially resistant oat line to be deduced and characterized. Further, a phylogenetic study carried out after alignment of these B. distachyon PK sequences with the most similar protein sequences of related species also allowed to deduce different functions for the PK cloned. RT-qPCR (Reverse Transcription-quantitative PCR) was analyzed on nine representative sequences to validate the reliability of the employed PK-profiling method as a tool for identifying the expression of resistance-associated genes. CONCLUSIONS: PK-profiling would appear to be a useful tool for the identification of the PKs expressed in oats after challenge by P. coronata, and perhaps other pathogens. Most of the PKs studied are related to receptor-like protein kinases expressed shortly after infection. This is in agreement with previous studies indicating a close relationship between partial resistance and the first layer of defense against pathogen used by plants.


Asunto(s)
Avena/genética , Basidiomycota , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas Quinasas/genética , Técnicas de Hibridación Sustractiva/métodos , Avena/enzimología , Avena/inmunología , Avena/microbiología , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/fisiología , Marcadores Genéticos/genética , Hibridación de Ácido Nucleico , Proteínas Quinasas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
9.
J Nutr Biochem ; 57: 14-25, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29649689

RESUMEN

The prevalence of overweight and obesity in the population, along with their associated complications, is a major factor contributing to increased morbidity and mortality in developed countries. The liver is a vital organ for maintaining metabolic homeostasis, especially in the adjustment periods in fasting and feeding. Per-Arnt-Sim (PAS) kinase (PASK) controls glucose homeostasis and energy metabolism in response to nutritional status. PASK-deficient mice with a high-fat diet (HFD) resist the development of obesity and hepatic steatosis, with improved insulin sensitivity. We have investigated the regulation of the PASK expression in an HFD, as well as its role in adapting to fasting and feeding conditions. PASK-deficient mice with an HFD record improved parameters for the following: body weight, glucose tolerance, insulin resistance and serum lipid parameters. An HFD alters the down-regulation of Pask expression produced by fasting, as normally happens in a standard-fat diet. PASK deficiency blocks or diminishes the expression of many genes overexpressed in HFD-fed mice, such as the following: transcription factors involved in the regulation of gluconeogenic enzymes, the transport of fatty acid into mitochondria, beta-oxidation and de novo lipogenesis. PASK also regulates gene expression posttranscriptionally through the short noncoding RNAs involved in lipid metabolism and glucose homeostasis. The expression of miR-33a and miR-143 changes in PASK-deficient mice with an HFD. Thus, PASK-deficient mice improved their adaptation to feeding/fasting through a highly regulated molecular mechanism that controls the expression and function of the transcription factors, enzymes and miRNAs involved in glucose and insulin signaling.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ayuno/fisiología , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Quinasas del Centro Germinal , Glucoquinasa/metabolismo , Gluconeogénesis/fisiología , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , MicroARNs , Obesidad/etiología , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...