Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37327781

RESUMEN

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudios Longitudinales , Multiómica , Progresión de la Enfermedad
3.
J Allergy Clin Immunol ; 152(1): 56-67, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001649

RESUMEN

BACKGROUND: Despite well-known susceptibilities to other respiratory viral infections, individuals with allergic asthma have shown reduced susceptibility to severe coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to identify mechanisms whereby type 2 inflammation in the airway protects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by using bronchial airway epithelial cells (AECs) from aeroallergen-sensitized children with asthma and healthy nonsensitized children. METHODS: We measured SARS-CoV-2 replication and ACE2 protein and performed bulk and single-cell RNA sequencing of ex vivo infected AEC samples with SARS-CoV-2 infection and with or without IL-13 treatment. RESULTS: We observed that viral replication was lower in AECs from children with allergic asthma than those from in healthy nonsensitized children and that IL-13 treatment reduced viral replication only in children with allergic asthma and not in healthy children. Lower viral transcript levels were associated with a downregulation of functional pathways of the ciliated epithelium related to differentiation as well as cilia and axoneme production and function, rather than lower ACE2 expression or increases in goblet cells or mucus secretion pathways. Moreover, single-cell RNA sequencing identified specific subsets of relatively undifferentiated ciliated epithelium (which are common in allergic asthma and highly responsive to IL-13) that directly accounted for impaired viral replication. CONCLUSION: Our results identify a novel mechanism of innate protection against SARS-CoV-2 in allergic asthma that provides important molecular and clinical insights during the ongoing COVID-19 pandemic.


Asunto(s)
Asma , COVID-19 , Niño , Humanos , SARS-CoV-2 , Interleucina-13 , Pandemias , Asma/epidemiología , Inflamación , Células Epiteliales/metabolismo , Epitelio/metabolismo
4.
PLoS One ; 15(11): e0241698, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33152014

RESUMEN

Oocyte maturation is a coordinated process that is tightly linked to reproductive potential. A better understanding of gene regulation during human oocyte maturation will not only answer an important question in biology, but also facilitate the development of in vitro maturation technology as a fertility treatment. We generated single-cell transcriptome and used our previously published single-cell methylome data from human oocytes at different maturation stages to investigate how genes are regulated during oocyte maturation, focusing on the potential regulatory role of non-CpG methylation. DNMT3B, a gene encoding a key non-CpG methylation enzyme, is one of the 1,077 genes upregulated in mature oocytes, which may be at least partially responsible for the increased non-CpG methylation as oocytes mature. Non-CpG differentially methylated regions (DMRs) between mature and immature oocytes have multiple binding motifs for transcription factors, some of which bind with DNMT3B and may be important regulators of oocyte maturation through non-CpG methylation. Over 98% of non-CpG DMRs locate in transposable elements, and these DMRs are correlated with expression changes of the nearby genes. Taken together, this data indicates that global non-CpG hypermethylation during oocyte maturation may play an active role in gene expression regulation, potentially through the interaction with transcription factors.


Asunto(s)
Epigenoma/genética , Oocitos/metabolismo , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Impresión Genómica/genética , Humanos , Análisis de la Célula Individual , Transcriptoma/genética , ADN Metiltransferasa 3B
5.
Nat Commun ; 11(1): 1061, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103011

RESUMEN

The study of gene regulation is dominated by a focus on the control of gene activation or increase in the level of expression. Just as critical is the process of gene repression or silencing. Chromatin signatures have identified enhancers, however, genome-wide identification of silencers by computational or experimental approaches are lacking. Here, we first define uncharacterized cis-regulatory elements likely containing silencers and find that 41.5% of ~7500 tested elements show silencer activity using massively parallel reporter assay (MPRA). We trained a support vector machine classifier based on MPRA data to predict candidate silencers in over 100 human and mouse cell or tissue types. The predicted candidate silencers exhibit characteristics expected of silencers. Leveraging promoter-capture HiC data, we find that over 50% of silencers are interacting with gene promoters having very low to no expression. Our results suggest a general strategy for genome-wide identification and characterization of silencer elements.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Represoras/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética
6.
Stem Cell Reports ; 12(5): 1129-1144, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31056477

RESUMEN

During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive) and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premarked by H3K4me1, providing an enhanced open chromatin state in naive pluripotency. The 2iL/I/F enhancer repertoire occupies 9% of the genome, three times that of primed cells, and can exist in broad chromatin domains over 50 kb. Enhancer chromatin states are largely poised. Seventy-seven percent of 2iL/I/F enhancers are decommissioned in a stepwise manner as cells become primed. While primed topologically associating domains are largely unaltered upon differentiation, naive 2iL/I/F domains expand across primed boundaries, affecting three-dimensional genome architecture. Differential topologically associating domain edges coincide with 2iL/I/F H3K4me1 enrichment. Our results suggest that naive-derived 2iL/I/F cells have a unique chromatin landscape, which may reflect early embryogenesis.


Asunto(s)
Blastocisto/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Animales , Blastocisto/citología , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Células Madre Embrionarias Humanas/citología , Humanos
7.
Cell Rep ; 20(6): 1448-1462, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793267

RESUMEN

We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.


Asunto(s)
Células Madre Embrionarias/citología , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Defectos del Tubo Neural/genética , Tubo Neural/embriología , Línea Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis
8.
Stem Cell Reports ; 9(3): 999-1015, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28844656

RESUMEN

Human bone marrow stromal cells, or mesenchymal stem cells (BM-MSCs), need expansion prior to use as cell-based therapies in immunological and tissue repair applications. Aging and expansion of BM-MSCs induce epigenetic changes that can impact therapeutic outcomes. By applying sequencing-based methods, we reveal that the breadth of DNA methylation dynamics associated with aging and expansion is greater than previously reported. Methylation changes are enriched at known distal transcription factor binding sites such as enhancer elements, instead of CpG-rich regions, and are associated with changes in gene expression. From this, we constructed hypo- and hypermethylation-specific regulatory networks, including a sub-network of BM-MSC master regulators and their predicted target genes, and identified putatively disrupted signaling pathways. Our genome-wide analyses provide a broader overview of age- and expansion-induced DNA methylation changes and a better understanding of the extent to which these changes alter gene expression and functionality of human BM-MSCs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Metilación de ADN/genética , Células Madre Mesenquimatosas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Sitios de Unión , Células Cultivadas , Islas de CpG/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Persona de Mediana Edad , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Adulto Joven
9.
PLoS One ; 9(1): e78349, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416123

RESUMEN

Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.


Asunto(s)
Adenocarcinoma/genética , Gastrinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular , Motivos de Nucleótidos/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA