Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oper Neurosurg (Hagerstown) ; 23(2): 115-124, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838451

RESUMEN

BACKGROUND: Pituitary adenomas (PAs) with cavernous sinus (CS) invasion can extend into the intradural space by breaking through the CS walls. OBJECTIVE: To elaborate on the potential breakthrough route through CS compartments for invasive PAs and describe relevant surgical anatomy and technical nuances, with an aim to improve resection rates. METHODS: Twelve colored silicon-injected human head specimens were used for endonasal and transcranial dissection of the CS walls; ligaments, dural folds, and cranial nerves on each compartment were inspected. Two illustrative cases of invasive PA are also presented. RESULTS: The potential breakthrough routes through the CS compartments had unique anatomic features. The superior compartment breakthrough was delimited by the anterior petroclinoidal ligament laterally, posterior petroclinoidal ligament posteriorly, and interclinoidal ligament medially; tumor extended into the parapeduncular space with an intimate spatial relationship with the oculomotor nerve and posterior communicating artery. The lateral compartment breakthrough was limited by the anterior petroclinoidal ligament superiorly and ophthalmic nerve inferiorly; tumor extended into the middle fossa, displacing the trochlear nerve and inferolateral trunk to reach the medial temporal lobe. The posterior compartment breakthrough delineated by the Gruber ligament, petrosal process of the sphenoid bone, and petrous apex inferiorly, posterior petroclinoidal ligament superiorly, and dorsum sellae medially; tumor displaced or encased the abducens nerve and inferior hypophyseal artery and compressed the cerebral peduncle. CONCLUSION: The superior lateral and posterior components of the CS are potential routes for invasion by PAs. Better identification of CS breakthrough patterns is crucial for achieving higher gross total resection and remission rates.


Asunto(s)
Adenoma , Seno Cavernoso , Neoplasias Hipofisarias , Nervio Abducens/anatomía & histología , Adenoma/diagnóstico por imagen , Adenoma/patología , Adenoma/cirugía , Seno Cavernoso/anatomía & histología , Seno Cavernoso/cirugía , Humanos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/cirugía , Hueso Esfenoides/cirugía
2.
J Neurosurg ; : 1-12, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35276642

RESUMEN

OBJECTIVE: The petrosal process of the sphenoid bone (PPsb) is a relevant skull base osseous prominence present bilaterally that can be used as a key surgical landmark, especially for identifying the abducens nerve. The authors investigated the surgical anatomy of the PPsb, its relationship with adjacent neurovascular structures, and its practical application in endoscopic endonasal surgery. METHODS: Twenty-one dried skulls were used to analyze the osseous anatomy of the PPsb. A total of 16 fixed silicone-injected postmortem heads were used to expose the PPsb through both endonasal and transcranial approaches. Dimensions and distances of the PPsb from the foramen lacerum (inferiorly) and top of the posterior clinoid process (PCP; superiorly) were measured. Moreover, anatomical variations and the relationship of the PPsb with the surrounding crucial structures were recorded. Three representative cases were selected to illustrate the clinical applications of the findings. RESULTS: The PPsb presented as a triangular bony prominence, with its base medially adjacent to the dorsum sellae and its apex pointing posterolaterally toward the petrous apex. The mean width of the PPsb was 3.5 ± 1 mm, and the mean distances from the PPsb to the foramen lacerum and the PCP were 5 ± 1 and 11 ± 2.5 mm, respectively. The PPsb is anterior to the petroclival venous confluence, superomedial to the inferior petrosal sinus, and inferomedial to the superior petrosal sinus; constitutes the inferomedial limit of the cavernous sinus; and delimits the upper limit of the paraclival internal carotid artery (ICA) before the artery enters the cavernous sinus. The PPsb is anterior and medial to and below the sixth cranial nerve, forming the floor of Dorello's canal. During surgery, gentle mobilization of the paraclival ICA reveals the petrosal process, serving as an accurate landmark for the location of the abducens nerve. CONCLUSIONS: This investigation revealed details of the microsurgical anatomy of the PPsb, its anatomical relationships, and its application as a surgical landmark for identifying the abducens nerve. This novel landmark may help in minimizing the risk of abducens nerve injury during transclival approaches, which extend laterally toward the petrous apex and cavernous sinus region.

3.
J Neurosurg ; : 1-13, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952521

RESUMEN

OBJECTIVE: The authors investigated the microvascular anatomy of the hippocampus and its implications for medial temporal tumor surgery. They aimed to reveal the anatomical variability of the arterial supply and venous drainage of the hippocampus, emphasizing its clinical implications for the removal of associated tumors. METHODS: Forty-seven silicon-injected cerebral hemispheres were examined using microscopy. The origin, course, irrigation territory, spatial relationships, and anastomosis of the hippocampal arteries and veins were investigated. Illustrative cases of hippocampectomy for medial temporal tumor surgery are also provided. RESULTS: The hippocampal arteries can be divided into 3 segments, the anterior (AHA), middle (MHA), and posterior (PHA) hippocampal artery complexes, which correspond to irrigation of the hippocampal head, body, and tail, respectively. The uncal hippocampal and anterior hippocampal-parahippocampal arteries contribute to the AHA complex, the posterior hippocampal-parahippocampal arteries serve as the MHA complex, and the PHA and splenial artery compose the PHA complex. Rich anastomoses between hippocampal arteries were observed, and in 11 (23%) hemispheres, anastomoses between each segment formed a complete vascular arcade at the hippocampal sulcus. Three veins were involved in hippocampal drainage-the anterior hippocampal, anterior longitudinal hippocampal, and posterior longitudinal hippocampal veins-which drain the hippocampal head, body, and tail, respectively, into the basal and internal cerebral veins. CONCLUSIONS: An understanding of the vascular variability and network of the hippocampus is essential for medial temporal tumor surgery via anterior temporal lobectomy with amygdalohippocampectomy and transsylvian selective amygdalohippocampectomy. Stereotactic procedures in this region should also consider the anatomy of the vascular arcade at the hippocampal sulcus.

4.
J Neurosurg ; 135(5): 1534-1549, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836500

RESUMEN

OBJECTIVE: The lateral posterior choroidal artery (LPChA) should be a major surgical consideration in the microsurgical management of lateral ventricular tumors. Here the authors aim to delineate the microsurgical anatomy of the LPChA by using anatomical microdissections. They describe the trajectory, segments, and variations of the LPChA and discuss the surgical implications when approaching the choroid plexus using different routes. METHODS: Twelve colored silicone-injected, lightly fixed, postmortem human head specimens were prepared for dissection. The origin, diameter, trunk, course, segment, length, spatial relationships, and anastomosis of the LPChA were investigated. The surgical landmarks of 4 different approaches to the LPChA were also examined thoroughly. RESULTS: The LPChA was present in 23 hemispheres (96%), and in 14 (61%) it originated from the posterior segment of the P2 (i.e., P2P); most commonly (61%) the LPChA had 2 trunks, and in 17 hemispheres (74%) it had a C-shaped trajectory. According to its course, the authors divided the LPChA into 3 segments: 1) cisternal, from PCA to choroidal fissure (length 10.6 ± 2.5 mm); 2) forniceal, starting at the choroidal fissure, 8.2 ± 5.7 mm posterior to the inferior choroidal point, and terminating at the posterior level of the choroidal fissure (length 28.7 ± 6.8 mm); and 3) pulvinar, starting at the posterior choroidal fissure and terminating in the pulvinar (length 5.9 ± 2.2 mm). The LPChA was divided into 3 patterns according to its entrance into the choroidal fissure: A (anterior) 78%; B (posterior) 13%; and C (mixed) 9%. The transsylvian trans-limen insulae approach provided the best exposure for cisternal and proximal forniceal segments; the lateral transtemporal approach facilitated a more direct approach to the forniceal segment, including cases with posterior entrance; the transparietal transcortical and contralateral posterior interhemispheric transfalcine transprecuneus approaches provided direct access to the pulvinar segment of the LPChA and to the posterior forniceal segment, including cases with posterior choroidal entrance. CONCLUSIONS: The LPChA typically runs in the medial border of the choroid plexus, which may facilitate its recognition during surgery. The distance between the AChA at the inferior choroidal point and the LPChA is a valuable reference during surgery, but there are cases of posterior choroidal entrance. Most frequently, there are 2 or more LPChA trunks, which makes possible the sacrifice of one trunk feeding the tumor while preserving the other that provides supply to relevant structures. The intraventricular approaches can be selected based on the tumor location and the LPChA anatomy.

5.
Oper Neurosurg (Hagerstown) ; 20(1): 83-90, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32864701

RESUMEN

BACKGROUND: The Smith-Robinson1 approach (SRA) is the most widely used route to access the anterior cervical spine. Although several authors have described this approach, there is a lack of the stepwise anatomic description of this operative technique. With the advent of new technologies in neuroanatomy education, such as volumetric models (VMs), the understanding of the spatial relation of the different neurovascular structures can be simplified. OBJECTIVE: To describe the anatomy of the SRA through the creation of VMs of anatomic dissections. METHODS: A total of 4 postmortem heads and a cervical replica were used to perform and record the SRA approach to the C4-C5 level. The most relevant steps and anatomy of the SRA were recorded using photogrammetry to construct VM. RESULTS: The SRA was divided into 6 major steps: positioning, incision of the skin, platysma, and muscle dissection with and without submandibular gland eversion and after microdiscectomy with cage positioning. Anatomic model of the cervical spine and anterior neck multilayer dissection was also integrated to improve the spatial relation of the different structures. CONCLUSION: In this study, we review the different steps of the classic SRA and its variations to different cervical levels. The VMs presented allow clear visualization of the 360-degree anatomy of this approach. This new way of representing surgical anatomy can be valuable resources for education and surgical planning.


Asunto(s)
Vértebras Cervicales , Cuello , Vértebras Cervicales/cirugía , Discectomía , Disección , Humanos , Cuello/cirugía , Disección del Cuello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA