Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(15): 3996-4005, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38574274

RESUMEN

The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density (HD) and low-density (LD) structures. Their identification often requires designing parameters that are subject to human intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the liquid-liquid critical point (LLCP). Encoding the information on the environment using local descriptors, we do not find evidence for two distinct thermodynamic structures. In contrast, when we deploy nonlocal descriptors that probe instead heterogeneities on the nanometer length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations close to criticality.

2.
J Phys Chem B ; 127(45): 9822-9832, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37930954

RESUMEN

The structure of the excess proton in liquid water has been the subject of lively debate on both experimental and theoretical fronts for the last century. Fluctuations of the proton are typically interpreted in terms of limiting states referred to as the Eigen and Zundel species. Here, we put these ideas under the microscope, taking advantage of recent advances in unsupervised learning that use local atomic descriptors to characterize environments of acidic water combined with advanced clustering techniques. Our agnostic approach leads to the observation of only one charged cluster and two neutral ones. We demonstrate that the charged cluster involving the excess proton is best seen as an ionic topological defect in water's hydrogen bond network, forming a single local minimum on the global free-energy landscape. This charged defect is a highly fluxional moiety, where the idealized Eigen and Zundel species are neither limiting configurations nor distinct thermodynamic states. Instead, the ionic defect enhances the presence of neutral water defects through strong interactions with the network. We dub the combination of the charged and neutral defect clusters as ZundEig, demonstrating that the fluctuations between these local environments provide a general framework for rationalizing more descriptive notions of the proton in the existing literature.

3.
J Chem Theory Comput ; 19(14): 4596-4605, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-36920997

RESUMEN

Machine-learning (ML) has become a key workhorse in molecular simulations. Building an ML model in this context involves encoding the information on chemical environments using local atomic descriptors. In this work, we focus on the Smooth Overlap of Atomic Positions (SOAP) and their application in studying the properties of liquid water both in the bulk and at the hydrophobic air-water interface. By using a statistical test aimed at assessing the relative information content of different distance measures defined on the same data space, we investigate if these descriptors provide the same information as some of the common order parameters that are used to characterize local water structure such as hydrogen bonding, density, or tetrahedrality to name a few. Our analysis suggests that the ML description and the standard order parameters of the local water structure are not equivalent. In particular, a combination of these order parameters probing local water environments can predict SOAP similarity only approximately, and vice versa, the environments that are similar according to SOAP are not necessarily similar according to the standard order parameters. We also elucidate the role of some of the metaparameters in the SOAP definition in encoding chemical information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA