Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Influenza Other Respir Viruses ; 17(8): e13170, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37621920

RESUMEN

The WHO Unity Studies initiative engaged low- and middle-income countries in the implementation of standardised SARS-CoV-2 sero-epidemiological investigation protocols and timely sharing of comparable results for evidence-based action. To gain a deeper understanding of the methodological challenges faced when conducting seroprevalence studies in the African region, we conducted unstructured interviews with key study teams in five countries. We discuss the challenges identified: participant recruitment and retention, sampling, sample and data management, data analysis and presentation. Potential solutions to aid future implementation include preparedness actions such as the development of new tools, robust planning and practice.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Estudios Seroepidemiológicos , África/epidemiología
2.
medRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503260

RESUMEN

Background: The Global Health community aims to eliminate soil-transmitted helminth (STH) infections by 2030. Current preventive methods such as Mass Drug Administration, WASH practices, and health education needs to be complimented to halt transmission. We tracked the movement of hookworm-infected and non-infected persons and investigated soil factors in the places they frequented within an endemic community to further understand the role of human movement and sources of infections. Methods: 59 positive and negative participants wore GPS tracking devices for 10 consecutive days and their movement data captured in real time. The data was overlaid on the community map to determine where each group differentially spent most of their time. Soil samples were collected from these identified sites and other communal places. Physical and chemical properties were determined for each sample using standard methods and helminth eggs cultured into larvae using the Baermann technique. Bivariate and multivariate analyses were used to determine associations between larvae counts and soil factors. Helminth species were identified with metagenomic sequencing and their distributions mapped to sampling sites in the community. Results: The study found that there was no significant difference in the average larvae counts in soil between sites assessed by infected and non-infected participants (P=0.59). However, soil factors, such as pH, carbon and sandy-loamy texture were associated with high larvae counts (P<0.001) while nitrogen and clay content were associated with low counts(P<0.001). The dominant helminth species identified were Panagrolaimus superbus (an anhydrobiotic helminth), Parastrongyloides trichosuri (a parasite of small mammals), Trichuris trichuria (whipworm), and Ancylostoma caninum (dog hookworm). Notably, no Necator americanus was identified in any soil sample. Conclusion: This study provides important insights into the association between soil factors and soil-transmitted helminths. These findings contribute to our understanding of STH epidemiology and support evidence-based decision-making for elimination strategies.

3.
Mol Diagn Ther ; 27(5): 583-592, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37462793

RESUMEN

INTRODUCTION: The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS: Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION: This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION: This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Ghana/epidemiología , Pandemias , Nucleocápside , Ensayo de Inmunoadsorción Enzimática/métodos , Sensibilidad y Especificidad
4.
Viruses ; 14(3)2022 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-35336950

RESUMEN

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Proteínas de la Nucleocápside/genética , Pandemias , SARS-CoV-2/genética
5.
medRxiv ; 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35169818

RESUMEN

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic has led to the development of various diagnostic tests. The OraSure InteliSwab ® COVID-19 Rapid Test is a recently developed and FDA emergency use authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern like Omicron. In this study, the sensitivity of the OraSure InteliSwab ® Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab ® Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants with recorded limits of detection ranging between 3.77 × 10 5 and 9.13 × 10 5 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the 6 VOCs. Ultimately, the OraSure InteliSwab ® COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...