Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22283103

RESUMEN

BackgroundThe global COVID-19 pandemic has peaked but some countries such as China are reporting serious infectious outbreaks due to SARS-CoV-2 variants. Waning vaccine-derived immunogenicity and mutations in variants allowing vaccine evasion require new booster immunization approaches. We compared homologous and heterologous boosting in adults previously fully primed with a whole-virus inactivated COVID-19 vaccine. MethodsAt multiple sites in the Philippines we enrolled 430 adults (18-72 years) immunized with two doses of CoronaVac at least 3 months previously and randomly assigned them to receive homologous (CoronaVac, n = 216) or heterologous (recombinant protein vaccine, SCB-2019, n = 214) booster doses. Non-inferiority/superiority of the neutralizing antibody (NAb) response 15 days after boosting was measured by microneutralization against prototype SARS-CoV-2, and Delta and Omicron variants in subsets (50 per arm). Participants recorded solicited local and systemic adverse events for 7 days, unsolicited AEs until Day 29, and serious adverse events until Day 60. ResultsNAb geometric mean titers (GMT) against prototype on Day 15 were 744 (95% CI: 669-828) and 164 (143-189) in heterologous and homologous groups, respectively, with a heterologous/homologous GMT ratio of 4.63 (3.95-5.41), meeting both pre-defined non-inferiority and superiority criteria. Similarly, geometric mean-fold rises for NAb against Delta and Omicron BA.1, BA.2, BA.4 and BA.5 variants were superior after heterologous SCB-2019 (range 3.01-4.66) than homologous CoronaVac (range 0.85-1.6) in an exploratory analysis. Reactogenicity and safety measures were evenly balanced between groups; the most frequent local reaction was mild or moderate injection site pain; mild or moderate headache and fatigue were the most frequent systemic adverse events. No vaccine-related serious adverse events were reported. ConclusionHeterologous boosting of CoronaVac-immunized adults with SCB-2019 was well tolerated with superior immunogenicity than homologous boosting, particularly for newly emerged variants, supporting use of SCB-2019 for booster vaccination.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-490428

RESUMEN

The Omicron variant of SARS-COV-2 (GISAID GRA clade [B.1.1.529, BA.1 and BA.2]) is now the single dominant Variant of Concern (VOC). The high number of mutations in the Omicron Spike (S) protein promotes humoral immunological escape. Although a third homologous boost with S, derived from the ancestral strain, was able to increase neutralizing antibody titers and breadth including to Omicron, the magnitude of virus neutralization could benefit from further optimization. Moreover, combining SARS-COV-2 strains as additional valences may address the current antigenicity range occupied by VOCs. Using Trimer-Tag platform we have previously demonstrated phase 3 efficacy and safety of a prototypic vaccine SCB-2019 in the SPECTRA trial and have submitted applications for licensure. Here, we successfully generated a bivalent vaccine candidate including both Ancestor and Omicron variant S-proteins. Preclinical studies demonstrate this SARS-CoV-2 bivalent S-Trimer subunit vaccine elicits high titers of neutralizing antibodies against all VOCs, with markedly enhanced Omicron specific neutralizing antibody responses.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-444369

RESUMEN

Beginning in late 2020, the emergence and spread of multiple variant SARS-CoV-2 strains harboring mutations which may enable immune escape necessitates the rapid evaluation of second generation COVID-19 vaccines, with the goal of inducing optimized immune responses that are broadly protective. Here we demonstrate in a mouse immunogenicity study that two doses of a modified B.1.351 spike (S)-Trimer vaccine (B.1.351 S-Trimer) candidate can induce strong humoral immune responses that can broadly neutralize both the original SARS-CoV-2 strain (Wuhan-Hu-1) and Variants of Concern (VOCs), including the UK variant (B.1.1.7), South African variant (B.1.351) and Brazil variant (P.1). Furthermore, while immunization with two doses (prime-boost) of Prototype S-Trimer vaccine (based on the original SARS-CoV-2 strain) induced lower levels of cross-reactive neutralization against the B.1.351 variant, a third dose (booster) administered with either Prototype S-Trimer or B.1.351 S-Trimer was able to increase neutralizing antibody titers against B.1.351 to levels comparable to neutralizing antibody titers against the original strain elicited by two doses of Prototype S-Trimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...