Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1286382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410507

RESUMEN

Introduction: The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods: We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results: Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertensión , Humanos , Enfermedad de la Arteria Coronaria/metabolismo , Monocitos/metabolismo , Redes Reguladoras de Genes , Lipopolisacáridos/farmacología , Hipertensión/genética , Arterias/metabolismo , Serina/metabolismo , Treonina/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética
2.
Front Immunol ; 14: 1165306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920458

RESUMEN

Introduction: Inhibition of STAT5 was recently reported to reduce murine atherosclerosis. However, the role of STAT5 isoforms, and more in particular STAT5A in macrophages in the context of human atherosclerosis remains unknown. Methods and results: Here, we demonstrate reciprocal expression regulation of STAT5A and STAT5B in human atherosclerotic lesions. The former was highly upregulated in ruptured over stable plaque and correlated with macrophage presence, a finding that was corroborated by the high chromosomal accessibility of STAT5A but not B gene in plaque macrophages. Phosphorylated STAT5 correlated with macrophages confirming its activation status. As macrophage STAT5 is activated by GM-CSF, we studied the effects of its silencing in GM-CSF differentiated human macrophages. STAT5A knockdown blunted the immune response, phagocytosis, cholesterol metabolism, and augmented apoptosis terms on transcriptional levels. These changes could partially be confirmed at functional level, with significant increases in apoptosis and decreases in lipid uptake and IL-6, IL-8, and TNFa cytokine secretion after STAT5A knockdown. Finally, inhibition of general and isoform A specific STAT5 significantly reduced the secretion of TNFa, IL-8 and IL-10 in ex vivo tissue slices of advanced human atherosclerotic plaques. Discussion: In summary, we identify STAT5A as an important determinant of macrophage functions and inflammation in the context of atherosclerosis and show its promise as therapeutic target in human atherosclerotic plaque inflammation.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transactivadores/genética , Factor de Transcripción STAT5/metabolismo , Interleucina-8/metabolismo , Transducción de Señal , Macrófagos , Aterosclerosis/metabolismo , Inflamación/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
STAR Protoc ; 4(4): 102601, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742177

RESUMEN

Recent technical advances, such as single-cell RNA sequencing and mass cytometry, improve identification of cell types and subsets in a range of healthy and diseased tissues at the expense of their cellular and molecular context. Here, we present a protocol for in situ multispectral imaging to map myeloid cell heterogeneity in tissue cryosections, describing steps for cutting sequential sections, antibody titration, and building a spectral library. We then detail procedures for multispectral imaging and preparing data for downstream analysis. For complete details on the use and execution of this protocol, please refer to Goossens et al. (2022).1.


Asunto(s)
Crioultramicrotomía , Células Mieloides , Diagnóstico por Imagen , Biblioteca de Genes
4.
Atherosclerosis ; 384: 117123, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37127497

RESUMEN

BACKGROUND AND AIMS: This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS: We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS: We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Femenino , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Caracteres Sexuales , Interleucina-4 , Citocinas/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108478

RESUMEN

Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Proteína ADAM17/metabolismo , Riñón/metabolismo , Proteína ADAM10/metabolismo , Inflamación , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
6.
Front Cardiovasc Med ; 10: 974918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776254

RESUMEN

Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results: Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion: Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.

7.
Cell Metab ; 34(8): 1214-1225.e6, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35858629

RESUMEN

Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Fenotipo
8.
Cardiovasc Res ; 118(13): 2768-2777, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34550346

RESUMEN

Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with advanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifestations that differentially impact plaque's fate. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcification to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall plaque fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflammation kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progression and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype, modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may explain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic osteoid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely lacking, it is crucial to better understand its mechanisms of development.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Calcificación Vascular , Humanos , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Calcificación Vascular/patología , Lípidos , Metaplasia/metabolismo , Metaplasia/patología , Hidroxiapatitas/metabolismo
9.
Cells ; 10(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504031

RESUMEN

To efficiently cross the endothelial barrier during inflammation, neutrophils first firmly adhere to the endothelial surface using the endothelial adhesion molecule ICAM-1. Upon actual transmigration, the release from ICAM-1 is required. While Integrin LFA1/Mac1 de-activation is one described mechanism that leads to this, direct cleavage of ICAM-1 from the endothelium represents a second option. We found that a disintegrin and metalloprotease 10 (ADAM10) cleaves the extracellular domain of ICAM-1 from the endothelial surface. Silencing or inhibiting endothelial ADAM10 impaired the efficiency of neutrophils to cross the endothelium, suggesting that neutrophils use endothelial ADAM10 to dissociate from ICAM-1. Indeed, when measuring transmigration kinetics, neutrophils took almost twice as much time to finish the diapedesis step when ADAM10 was silenced. Importantly, we found increased levels of ICAM-1 on the transmigrating neutrophils when crossing an endothelial monolayer where such increased levels were not detected when neutrophils crossed bare filters. Using ICAM-1-GFP-expressing endothelial cells, we show that ICAM-1 presence on the neutrophils can also occur by membrane transfer from the endothelium to the neutrophil. Based on these findings, we conclude that endothelial ADAM10 contributes in part to neutrophil transendothelial migration by cleaving ICAM-1, thereby supporting the release of neutrophils from the endothelium during the final diapedesis step.


Asunto(s)
Proteína ADAM10/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Migración Transendotelial y Transepitelial , Proteína ADAM10/antagonistas & inhibidores , Adhesión Celular , Endotelio/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos
11.
Front Cardiovasc Med ; 7: 617842, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585584

RESUMEN

α-Klotho (Klotho) exists in two different forms, a membrane-bound and soluble form, which are highly expressed in the kidney. Both forms play an important role in various physiological and pathophysiological processes. Recently, it has been identified that soluble Klotho arises exclusively from shedding or proteolytic cleavage. In this review, we will highlight the mechanisms underlying the shedding of Klotho and the functional effects of soluble Klotho, especially in CKD and the associated cardiovascular complications. Klotho can be cleaved by a process called shedding, releasing the ectodomain of the transmembrane protein. A disintegrin and metalloproteases ADAM10 and ADAM17 have been demonstrated to be mainly responsible for this shedding, resulting in either full-length fragments or sub-fragments called KL1 and KL2. Reduced levels of soluble Klotho have been associated with kidney disease, especially chronic kidney disease (CKD). In line with a protective effect of soluble Klotho in vascular function and calcification, CKD and the reduced levels of soluble Klotho herein are associated with cardiovascular complications. Interestingly, although it has been demonstrated that soluble Klotho has a multitude of effects its direct impact on vascular cells and the exact underlying mechanisms remain largely unknown and should therefore be a major focus of further research. Moreover, functional implications of the cleavage process resulting in KL1 and KL2 fragments remain to be elucidated.

12.
Cardiovasc Res ; 115(14): 1937-1939, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270532
14.
Blood Adv ; 2(18): 2320-2331, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30232085

RESUMEN

The platelet receptors glycoprotein Ibα (GPIbα) and GPVI are known to be cleaved by members of a disintegrin and metalloprotease (ADAM) family (ADAM10 and ADAM17), but the mechanisms and consequences of this shedding are not well understood. Our results revealed that (1) glycoprotein shedding is confined to distinct platelet populations showing near-complete shedding, (2) the heterogeneity between (non)shed platelets is independent of agonist type but coincides with exposure of phosphatidylserine (PS), and (3) distinct pathways of shedding are induced by elevated Ca2+, low Ca2+ protein kinase C (PKC), or apoptotic activation. Furthermore, we found that receptor shedding reduces binding of von Willebrand factor, enhances binding of coagulation factors, and augments fibrin formation. In response to Ca2+-increasing agents, shedding of GPIbα was abolished by ADAM10/17 inhibition but not by blockage of calpain. Stimulation of PKC induced shedding of only GPIbα, which was annulled by kinase inhibition. The proapoptotic agent ABT-737 induced shedding, which was caspase dependent. In Scott syndrome platelets that are deficient in Ca2+-dependent PS exposure, shedding occurred normally, indicating that PS exposure is not a prerequisite for ADAM activity. In whole-blood thrombus formation, ADAM-dependent glycoprotein shedding enhanced thrombin generation and fibrin formation. Together, these findings indicate that 2 major activation pathways can evoke ADAM-mediated glycoprotein shedding in distinct platelet populations and that shedding modulates platelet function from less adhesive to more procoagulant.


Asunto(s)
Plaquetas/metabolismo , Glicoproteínas/metabolismo , Activación Plaquetaria , Proteínas ADAM/metabolismo , Biomarcadores , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Caspasas/metabolismo , Citometría de Flujo , Humanos , Ionomicina/farmacología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Trombina/metabolismo , Trombosis/metabolismo
15.
Thromb Haemost ; 118(7): 1167-1175, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29874690

RESUMEN

A disintegrin and metalloproteases (ADAMs) are membrane-bound enzymes responsible for the shedding or cleavage of various cell surface molecules, such as adhesion molecules, cytokines/chemokines and growth factors. This shedding can result in the release of soluble proteins that can exert agonistic or antagonistic functions. Additionally, ADAM-mediated cleavage can render these membrane proteins inactive. This review will describe the role and association of ADAMs in various pathologies with a main focus on ADAM10 and ADAM17 in atherosclerosis, including a brief overview of atherosclerosis-related ADAM substrates. Furthermore, ADAMs involvement in other metabolic and inflammatory diseases like diabetes, sepsis, Alzheimer's disease and rheumatoid arthritis will be highlighted. Subsequently, we will briefly discuss an interesting emerging field of research, i.e. the potential implications of ADAM expression in extracellular vesicles. Finally, several ADAM-based therapeutic and diagnostic (theranostic) opportunities will be discussed, while focusing on key questions about the required specificity and selectivity.


Asunto(s)
Proteínas ADAM/metabolismo , Enfermedades Cardiovasculares/terapia , Inflamación/terapia , Enfermedades Metabólicas/terapia , Nanomedicina Teranóstica/métodos , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/genética , Vesículas Extracelulares/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/diagnóstico , Inflamación/enzimología , Inflamación/genética , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/genética , Valor Predictivo de las Pruebas , Pronóstico , Inhibidores de Proteasas/uso terapéutico , Especificidad por Sustrato
16.
Artículo en Inglés | MEDLINE | ID: mdl-29404342

RESUMEN

Extracellular vesicles (EVs) have emerged as a novel intercellular communication system. By carrying bioactive lipids, miRNAs and proteins they can modulate target cell functions and phenotype. Circulating levels of EVs are increased in inflammatory conditions, e.g., cardiovascular disease patients, and their functional contribution to atherosclerotic disease development is currently heavily studied. This review will describe how EVs can modulate vascular cell functions relevant to vascular inflammation and atherosclerosis, particularly highlighting the role of EV-associated proteolytic activity and effector proteins involved. Furthermore, we will discuss key questions and challenges, especially for EV-based therapeutics.

17.
Eur J Pharmacol ; 816: 14-24, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28989084

RESUMEN

Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.


Asunto(s)
Macrófagos/citología , Macrófagos/inmunología , Fenotipo , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/terapia , Animales , Humanos , Macrófagos/efectos de los fármacos , Terapia Molecular Dirigida , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo
18.
Sci Rep ; 7(1): 11670, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916789

RESUMEN

Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/prognostic biomarker to distinguish between stable and unstable lesions.


Asunto(s)
Proteínas ADAM/análisis , Proteínas ADAM/deficiencia , Aterosclerosis/fisiopatología , Proteínas de la Membrana/análisis , Proteínas de la Membrana/deficiencia , Placa Aterosclerótica/patología , Animales , Antígenos CD , Arterias Carótidas/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Macrófagos/química , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Cell Metab ; 26(1): 4-5, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28648982

RESUMEN

Van der Vorst et al. underscore the relevance of HDL quality control, considering HDL source and processing, but argue that disease- or storage-associated structural modifications of HDL cannot explain the observed pro-inflammatory effects on macrophages. Discrepancies between reported effects of HDL in macrophages are probably related to methodological differences.


Asunto(s)
Inflamación/inmunología , Lipoproteínas HDL/inmunología , Macrófagos/inmunología , Animales , Humanos , Inmunidad Innata , Macrófagos/química , Preservación Biológica , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...