Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446353

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous tumors, well known for their frequent relapsing nature. To counter recurrence, biomarkers for early diagnosis, prognosis, or treatment response prediction are urgently needed. miRNAs can profoundly impact normal physiology and enhance oncogenesis. Among all of the miRNAs, the miR-30 family is frequently downregulated in HNSCC. Here, we determined how levels of the 3p passenger strands of miR-30a and miR-30e affect tumor behavior and clarified their functional role in LA-HNSCC. In a retrospective study, levels of miR-30a-3p and miR-30e-3p were determined in 110 patients and correlated to overall survival, locoregional relapse, and distant metastasis. miR-30a/e-3p were expressed in HNSCC cell lines and HNSCC patient-derived tumoroids (PDTs) to investigate their effect on tumor cells and their microenvironment. Both miRNAs were found to have a prognosis value since low miR-30a/e-3p expression correlates to adverse prognosis and reduces overall survival. Low expression of miR-30a/e-3p is associated with a shorter time until locoregional relapse and a shorter time until metastasis, respectively. miR-30a/e-3p expression downregulates both TGF-ßR1 and BMPR2 and attenuates the survival and motility of HNSCC. Results were confirmed in PDTs. Finally, secretomes of miR-30a/e-3p-transfected HNSCC activate M1-type macrophages, which exert stronger phagocytic activities toward tumor cells. miR-30a/e-3p expression can discriminate subgroups of LA-HNSCC patients with different prognosis, making them good candidates as prognostic biomarkers. Furthermore, by targeting members of the TGF-ß family and generating an immune-permissive microenvironment, they may emerge as an alternative to anti-TGF-ß drugs to use in combination with immune checkpoint inhibitors.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Estudios Retrospectivos , Neoplasias de Cabeza y Cuello/genética , Recurrencia Local de Neoplasia/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298093

RESUMEN

Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Células Madre Neoplásicas/metabolismo
3.
Int J Pharm ; 641: 123071, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37244463

RESUMEN

A growing body of experimental and clinical evidence suggests that rare cell populations, known as cancer stem cells (CSCs), play an important role in the development and therapeutic resistance of several cancers, including glioblastoma. Elimination of these cells is therefore of paramount importance. Interestingly, recent results have shown that the use of drugs that specifically disrupt mitochondria or induce mitochondria-dependent apoptosis can efficiently kill cancer stem cells. In this context, a novel series of platinum(II) complexes bearing N-heterocyclic carbene (NHC) of the type [(NHC)PtI2(L)] modified with the mitochondria targeting group triphenylphosphonium were synthesized. After a complete characterization of the platinum complexes, the cytotoxicity against two different cancer cell lines, including a cancer stem cell line, was investigated. The best compound reduced the cell viability of both cell lines by 50% in the low µM range, with an approximately 300-fold higher anticancer activity on the CSC line compared to oxaliplatin. Finally, mechanistic studies showed that the triphenylphosphonium functionalized platinum complexes significantly altered mitochondrial function and also induced atypical cell death.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Platino (Metal)/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Muerte Celular
5.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899869

RESUMEN

(1) Background: Epiregulin (EREG) is a ligand of EGFR and ErB4 involved in the development and the progression of various cancers including head and neck squamous cell carcinoma (HNSCC). Its overexpression in HNSCC is correlated with short overall survival and progression-free survival but predictive of tumors responding to anti-EGFR therapies. Besides tumor cells, macrophages and cancer-associated fibroblasts shed EREG in the tumor microenvironment to support tumor progression and to promote therapy resistance. Although EREG seems to be an interesting therapeutic target, no study has been conducted so far on the consequences of EREG invalidation regarding the behavior and response of HNSCC to anti-EGFR therapies and, more specifically, to cetuximab (CTX); (2) Methods: EREG was silenced in various HNSCC cell lines. The resulting phenotype (growth, clonogenic survival, apoptosis, metabolism, ferroptosis) was assessed in the absence or presence of CTX. The data were confirmed in patient-derived tumoroids; (3) Results: Here, we show that EREG invalidation sensitizes cells to CTX. This is illustrated by the reduction in cell survival, the alteration of cell metabolism associated with mitochondrial dysfunction and the initiation of ferroptosis characterized by lipid peroxidation, iron accumulation and the loss of GPX4. Combining ferroptosis inducers (RSL3 and metformin) with CTX drastically reduces the survival of HNSCC cells but also HNSCC patient-derived tumoroids; (4) Conclusions: The loss of EREG might be considered in clinical settings as a predictive biomarker for patients that might undergo ferroptosis in response to CTX and that might benefit the most from the combination of ferroptosis inducers and CTX.


Asunto(s)
Ferroptosis , Neoplasias de Cabeza y Cuello , Humanos , Cetuximab/farmacología , Epirregulina/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
6.
Cancers (Basel) ; 15(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36831610

RESUMEN

Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.

7.
Trends Cancer ; 9(1): 9-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400694

RESUMEN

Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología
8.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291841

RESUMEN

The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.

9.
Pharmaceutics ; 14(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36297416

RESUMEN

Nucleic-acid aptamers are of strong interest for diagnosis and therapy. Compared with antibodies, they are smaller, stable upon variations in temperature, easy to modify, and have higher tissue-penetration abilities. However, they have been little described as detection probes in histology studies of human tissue sections. In this study, we performed fluorescence imaging with two aptamers targeting cell-surface receptors EGFR and integrin α5ß1, both involved in the aggressiveness of glioblastoma. The aptamers' cell-binding specificities were confirmed using confocal imaging. The affinities of aptamers for glioblastoma cells expressing these receptors were in the 100-300 nM range. The two aptamers were then used to detect EGFR and integrin α5ß1 in human glioblastoma tissues and compared with antibody labeling. Our aptafluorescence assays proved to be able to very easily reveal, in a one-step process, not only inter-tumoral glioblastoma heterogeneity (differences observed at the population level) but also intra-tumoral heterogeneity (differences among cells within individual tumors) when aptamers with different specificities were used simultaneously in multiplexing labeling experiments. The discussion also addresses the strengths and limitations of nucleic-acid aptamers for biomarker detection in histology.

10.
Adv Healthc Mater ; 11(19): e2200195, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057996

RESUMEN

Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/patología , Huesos/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Osteosarcoma/metabolismo , Oxígeno , Microambiente Tumoral
11.
Chem Biol Interact ; 367: 110167, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087816

RESUMEN

Cancer stem cells (CSCs) represent a difficult to treat cellular niche within tumours due to their unique characteristics, which give them a high propensity for resistance to classical anti-cancer treatments and the ability to repopulate the tumour mass. An attribute that may be implicated in the high rates of recurrence of certain tumours. However, other characteristics specific to these cells, such as their high dependence on mitochondria, may be exploited for the development of new therapeutic agents that are effective against the niche. As such, a previously described phosphorescent N-heterocyclic carbene iridium(III) compound which showed a high level of cytotoxicity against classical tumour cell lines with mitochondria-specific effects was studied for its potential against CSCs. The results showed a significantly higher level of activity against several CSC lines compared to non-CSCs. Mitochondrial localisation and superoxide production were confirmed. Although the cell death involved caspase activation, their role in cell death was not definitive, with a potential implication of other, non-apoptotic pathways shown. A cytostatic effect of the compound was also displayed at low mortality doses. This study thus provides important insights into the mechanisms and the potential for this class of molecule in the domain of anti-CSC therapeutics.


Asunto(s)
Antineoplásicos , Citostáticos , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Caspasas/metabolismo , Citostáticos/farmacología , Iridio/metabolismo , Iridio/farmacología , Metano/análogos & derivados , Células Madre Neoplásicas/metabolismo , Superóxidos/metabolismo
12.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35326631

RESUMEN

BACKGROUND: Osteosarcomas (OTS) represent the most common primary bone cancer diagnosed in adolescents and young adults. Despite remarkable advances, there are no objective molecular or imaging markers able to predict an OTS outcome at diagnosis. Focusing on biomarkers contributing broadly to treatment resistance, we examine the interplay between the tumor-associated macrophages and intra-tumor hypoxia. METHODS: Radiological and immunohistochemical (IHC) data were correlated with the outcome in a retrospective and monocentric cohort of 30 pediatric OTS. We studied hypoxic (pS6, phospho-mTor, HIF-1α and carbonic anhydrase IX (CAIX)) and macrophagic (CD68 and CD163) biomarkers. RESULTS: The imaging analyses were based on MRI manual volumetric measures on axial post-contrast T1 weighted images, where, for each tumor, we determined the necrotic volume and its ratio to the entire tumor volume. When they were above 50 cm3 and 20%, respectively, they correlated with a worse overall survival (p = 0.0072 and p = 0.0136, respectively) and event-free survival (p = 0.0059 and p = 0.0143, respectively). IHC assessments enable a significant statistical link between HIF-1α/CAIX hyper-expressions, CD68+ cells and a worse outcome, whereas activation of mTor pathway was linked to a better survival rate and CD163+ cells. CONCLUSIONS: This study evidenced the links between hypoxia and immunity in OTS, as their poor outcome may be related to a larger necrotic volume on diagnostic MRI and, in biopsies, to a specific IHC profile.

13.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053532

RESUMEN

Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5ß1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5ß1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5ß1 integrin.

14.
J Funct Biomater ; 14(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36662064

RESUMEN

Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.

15.
J Vis Exp ; (177)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34866620

RESUMEN

Pediatric high-grade gliomas (pHGG) represent childhood and adolescent brain cancers that carry a rapid dismal prognosis. Since there is a need to overcome the resistance to current treatments and find a new way of cure, modeling the disease as close as possible in an in vitro setting to test new drugs and therapeutic procedures is highly demanding. Studying their fundamental pathobiological processes, including glutamatergic neuron hyperexcitability, will be a real advance in understanding interactions between the environmental brain and pHGG cells. Therefore, to recreate neurons/pHGG cell interactions, this work shows the development of a functional in vitro model co-culturing human-induced Pluripotent Stem (hiPS)-derived cortical glutamatergic neurons pHGG cells into compartmentalized microfluidic devices and a process to record their electrophysiological modifications. The first step was to differentiate and characterize human glutamatergic neurons. Secondly, the cells were cultured in microfluidic devices with pHGG derived cell lines. Brain microenvironment and neuronal activity were then included in this model to analyze the electrical impact of pHGG cells on these micro-environmental neurons. Electrophysiological recordings are coupled using multielectrode arrays (MEA) to these microfluidic devices to mimic physiological conditions and to record the electrical activity of the entire neural network. A significant increase in neuron excitability was underlined in the presence of tumor cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adolescente , Neoplasias Encefálicas/patología , Niño , Técnicas de Cocultivo , Glioma/patología , Humanos , Dispositivos Laboratorio en un Chip , Neuronas/fisiología , Microambiente Tumoral
16.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34577582

RESUMEN

Integrin α5ß1 was suggested to be involved in glioblastoma (GBM) aggressiveness and treatment resistance through preclinical studies and genomic analysis in patients. However, further protein expression data are still required to confirm this hypothesis. In the present study, we investigated by immunofluorescence the expression of integrin α5 and its prognostic impact in a glioblastoma series of patients scheduled to undergo the Stupp protocol as first-line treatment for GBM. The integrin α5 protein expression level was estimated in each tumor by the mean fluorescence intensity (MFI) and allowed us to identify two subpopulations showing either a high or low expression level. The distribution of patients in both subpopulations was not significantly different according to age, gender, recursive partitioning analysis (RPA) prognostic score, molecular markers or surgical and medical treatment. A high integrin α5 protein expression level was associated with a high risk of recurrence (HR = 1.696, 95% CI 1.031-2.792, p = 0.0377) and reduced overall survival (OS), even more significant in patients who completed the Stupp protocol (median OS: 15.6 vs. 22.8 months; HR = 2.324; 95% CI 1.168-4.621, p = 0.0162). In multivariate analysis, a high integrin α5 protein expression level was confirmed as an independent prognostic factor in the subpopulation of patients who completed the temozolomide-based first-line treatment for predicting OS over age, extent of surgery, RPA score and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (p = 0.029). In summary, for the first time, our study validates that a high integrin α5 protein expression level is associated with poor prognosis in GBM and confirms its potential as a therapeutic target implicated in the Stupp protocol resistance.

17.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207120

RESUMEN

The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy is the only targeted therapy that has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Recurrence arises in 50% of patients with HNSCC in the years following treatment. In clinicopathological practice, it is difficult to assign patients to classes of risk because no reliable biomarkers are available to predict the outcome of HPV-unrelated HNSCC. In the present study, we investigated the role of Caveolin-1 (Cav1) in the sensitivity of HNSCC cell lines to CTX-radiotherapy that might predict HNSCC relapse. Ctrl- and Cav-1-overexpressing HNSCC cell lines were exposed to solvent, CTX, or irradiation, or exposed to CTX before irradiation. Growth, clonogenicity, cell cycle progression, apoptosis, metabolism and signaling pathways were analyzed. Cav1 expression was analyzed in 173 tumor samples and correlated to locoregional recurrence and overall survival. We showed that Cav1-overexpressing cells demonstrate better survival capacities and remain proliferative and motile when exposed to CTX-radiotherapy. Resistance is mediated by the Cav1/EREG/YAP axis. Patients whose tumors overexpressed Cav1 experienced regional recurrence a few years after adjuvant radiotherapy ± chemotherapy. Together, our observations suggest that a high expression of Cav1 might be predictive of locoregional relapse of LA-HNSCC.

18.
Cancers (Basel) ; 13(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067180

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, displaying frequent resistance to standard therapies. Profiling DNA repair and cell cycle gene expression has recently been proposed as a strategy to classify adult glioblastomas. To improve our understanding of the DNA damage response pathways that operate in pHGGs and the vulnerabilities that these pathways might expose, we sought to identify and characterize a specific DNA repair and cell-cycle gene expression signature of pHGGs. METHODS: Transcriptomic analyses were performed to identify a DNA repair and cell-cycle gene expression signature able to discriminate pHGGs (n = 6) from low-grade gliomas (n = 10). This signature was compared to related signatures already established. We used the pHGG signature to explore already transcriptomic datasets of DIPGs and sus-tentorial pHGGs. Finally, we examined the expression of key proteins of the pHGG signature in 21 pHGG diagnostic samples and nine paired relapses. Functional inhibition of one DNA repair factor was carried out in four patients who derived H3.3 K27M mutant cell lines. RESULTS: We identified a 28-gene expression signature of DNA repair and cell cycle that clustered pHGGs cohorts, in particular sus-tentorial locations, in two groups. Differential protein expression levels of PARP1 and XRCC1 were associated to TP53 mutations and TOP2A amplification and linked significantly to the more radioresistant pHGGs displaying the worst outcome. Using patient-derived cell lines, we showed that the PARP-1/XRCC1 expression balance might be correlated with resistance to PARP1 inhibition. CONCLUSION: We provide evidence that PARP1 overexpression, associated to XRCC1 expression, TP53 mutations, and TOP2A amplification, is a new theranostic and potential therapeutic target.

19.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918704

RESUMEN

Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.

20.
Biophys Rep (N Y) ; 1(2): 100021, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36425460

RESUMEN

Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...