Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 22(10): 4825-31, 2006 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-16649802

RESUMEN

The water core of reverse micelles has been extensively used as the site for synthesis of a variety of materials. However, water-in-oil reverse micelles have a limited range of temperatures over which they are stable as a single phase. Directing heat to the water cores, the usual site of synthesis without heating the bulk provides added opportunities for synthesis. Microwave radiation is a method for superheating the water cores. In this study, we use an H2O-sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-heptane reverse micelle system for the synthesis of Au particles by hydrazine reduction of HAuCl4 in the presence and absence of microwave radiation. The duration of the microwave radiation was limited to a 2-min duration at a power of 300 W, thereby ensuring that the reverse micelle phase is maintained during the synthesis. At all hydrazine concentrations studied (0.5-2 M), the presence of microwave radiation led to an increase in the particle size of Au. The second system examined was the growth of microporous zincophosphate-X (ZnPO-X, an analogue of the faujasite structure) synthesized from H2O-dioctyldimethylammonium chloride (DODMAC)-heptane reverse micelle system. Microwave radiation was applied for 1 min at 150 W at various stages of the nucleation and growth process, and did not disrupt the reverse micelle system. Product analysis after 48 h of reaction showed that the 1-min microwave pulse, if applied during the nucleation stage (the first 4 h), promoted the formation of NaZnPO4.H2O over ZnPO-X. The effect of the microwave pulse at the growth stage was to promote the formation of ZnPO-X. Absorption of the microwave radiation by the water core and surrounding polar surfactant molecules leads to a rapid rise in local temperature (predicted to be approximately 150 degrees C/min for the AOT system), increasing the rates of intramicellar reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA