Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(1): 012501, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669221

RESUMEN

The atomic masses of ^{55}Sc, ^{56,58}Ti, and ^{56-59}V have been determined using the high-precision multireflection time-of-flight technique. The radioisotopes have been produced at RIKEN's Radioactive Isotope Beam Factory (RIBF) and delivered to the novel designed gas cell and multireflection system, which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For ^{56,58}Ti and ^{56-59}V, the mass uncertainties have been reduced down to the order of 10 keV, shedding new light on the N=34 shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species ^{58}Ti and ^{59}V. With the new precision achieved, we reveal the nonexistence of the N=34 empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied νp_{3/2} orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the νd_{5/2} and νg_{9/2} orbits and compare the results with conventional shell model calculations, which exclude the νg_{9/2} and the νd_{5/2} orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at N=34.


Asunto(s)
Neutrones , Titanio
2.
Phys Rev Lett ; 129(26): 262501, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608181

RESUMEN

The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_{7/2} and 2p_{3/2} orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_{3/2} orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.

3.
Phys Rev Lett ; 126(25): 252501, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34241497

RESUMEN

Direct proton-knockout reactions of ^{55}Sc at ∼220 MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^{55}Sc ground state with states in ^{54}Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^{55}Sc, valence proton removals populated predominantly the ground state of ^{54}Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

4.
Phys Rev Lett ; 126(7): 072501, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666458

RESUMEN

We studied the proton-rich T_{z}=-1 nucleus ^{70}Kr through inelastic scattering at intermediate energies in order to extract the reduced transition probability, B(E2;0^{+}→2^{+}). Comparison with the other members of the A=70 isospin triplet, ^{70}Br and ^{70}Se, studied in the same experiment, shows a 3σ deviation from the expected linearity of the electromagnetic matrix elements as a function of T_{z}. At present, no established nuclear structure theory can describe this observed deviation quantitatively. This is the first violation of isospin symmetry at this level observed in the transition matrix elements. A heuristic approach may explain the anomaly by a shape change between the mirror nuclei ^{70}Kr and ^{70}Se contrary to the model predictions.

5.
Phys Rev Lett ; 125(1): 012501, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678621

RESUMEN

Twenty-one two-proton knockout (p,3p) cross sections were measured from neutron-rich nuclei at ∼250 MeV/nucleon in inverse kinematics. The angular distribution of the three emitted protons was determined for the first time, demonstrating that the (p,3p) kinematics are consistent with two sequential proton-proton collisions within the projectile nucleus. Ratios of (p,3p) over (p,2p) inclusive cross sections follow the trend of other many-nucleon removal reactions, further reinforcing the sequential nature of (p,3p) in neutron-rich nuclei.

6.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567915

RESUMEN

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

7.
Phys Rev Lett ; 124(22): 222501, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567911

RESUMEN

Here we present new information on the shape evolution of the very neutron-rich ^{92,94}Se nuclei from an isomer-decay spectroscopy experiment at the Radioactive Isotope Beam Factory at RIKEN. High-resolution germanium detectors were used to identify delayed γ rays emitted following the decay of their isomers. New transitions are reported extending the previously known level schemes. The isomeric levels are interpreted as originating from high-K quasineutron states with an oblate deformation of ß∼0.25, with the high-K state in ^{94}Se being metastable and K hindered. Following this, ^{94}Se is the lowest-mass neutron-rich nucleus known to date with such a substantial K hindrance. Furthermore, it is the first observation of an oblate K isomer in a deformed nucleus. This opens up the possibility for a new region of K isomers at low Z and at oblate deformation, involving the same neutron orbitals as the prolate orbitals within the classic Z∼72 deformed hafnium region. From an interpretation of the level scheme guided by theoretical calculations, an oblate deformation is also suggested for the ^{94}Se_{60} ground-state band.

8.
Phys Rev Lett ; 124(21): 212503, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530691

RESUMEN

The heaviest bound isotope of boron ^{19}B has been investigated using exclusive measurements of its Coulomb dissociation, into ^{17}B and two neutrons, in collisions with Pb at 220 MeV/nucleon. Enhanced electric dipole (E1) strength is observed just above the two-neutron decay threshold with an integrated E1 strength of B(E1)=1.64±0.06(stat)±0.12(sys) e^{2} fm^{2} for relative energies below 6 MeV. This feature, known as a soft E1 excitation, provides the first firm evidence that ^{19}B has a prominent two-neutron halo. Three-body calculations that reproduce the energy spectrum indicate that the valence neutrons have a significant s-wave configuration and exhibit a dineutronlike correlation.

9.
Phys Rev Lett ; 124(2): 022501, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004026

RESUMEN

Spectroscopic factors of neutron-hole and proton-hole states in ^{131}Sn and ^{131}In, respectively, were measured using one-nucleon removal reactions from doubly magic ^{132}Sn at relativistic energies. For ^{131}In, a 2910(50)-keV γ ray was observed for the first time and tentatively assigned to a decay from a 5/2^{-} state at 3275(50) keV to the known 1/2^{-} level at 365 keV. The spectroscopic factors determined for this new excited state and three other single-hole states provide first evidence for a strong fragmentation of single-hole strength in ^{131}Sn and ^{131}In. The experimental results are compared to theoretical calculations based on the relativistic particle-vibration coupling model and to experimental information for single-hole states in the stable doubly magic nucleus ^{208}Pb.

10.
Sci Total Environ ; 709: 136142, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31905556

RESUMEN

Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.

11.
Phys Rev Lett ; 123(14): 142501, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702209

RESUMEN

Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a ^{54}Ca beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p_{3/2} state compared to the f_{5/2} state observed in the excitation of ^{53}Ca provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.

12.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283269

RESUMEN

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

13.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283301

RESUMEN

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

14.
Nature ; 569(7754): 53-58, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043730

RESUMEN

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

15.
Phys Rev Lett ; 122(16): 162503, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075035

RESUMEN

Fifty-five inclusive single nucleon-removal cross sections from medium mass neutron-rich nuclei impinging on a hydrogen target at ∼250 MeV/nucleon are measured at the RIKEN Radioactive Isotope Beam Factory. Systematically higher cross sections are found for proton removal from nuclei with an even number of protons as compared to odd-proton number projectiles for a given neutron separation energy. Neutron removal cross sections display no even-odd splitting, contrary to nuclear cascade model predictions. Both effects are understood through simple considerations of neutron separation energies and bound state level densities originating in pairing correlations in the daughter nuclei. These conclusions are supported by comparison with semimicroscopic model predictions, highlighting the enhanced role of low-lying level densities in nucleon-removal cross sections from loosely bound nuclei.

16.
Phys Rev Lett ; 122(5): 052501, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30822018

RESUMEN

One of the most exotic light neutron-rich nuclei currently accessible for experimental study is ^{40}Mg, which lies at the intersection of the nucleon magic number N=28 and the neutron drip line. Low-lying excited states of ^{40}Mg have been studied for the first time following a one-proton removal reaction from ^{41}Al, performed at the Radioactive Isotope Beam Factory of RIKEN Nishina Center with the DALI2 γ-ray array and the ZeroDegree spectrometer. Two γ-ray transitions were observed, suggesting an excitation spectrum that shows unexpected properties as compared to both the systematics along the Z=12, N≥20 Mg isotopes and available state-of-the-art theoretical model predictions. A possible explanation for the observed structure involves weak-binding effects in the low-lying excitation spectrum.

17.
Phys Rev Lett ; 122(7): 072502, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848641

RESUMEN

The first γ-ray spectroscopy of ^{52}Ar, with the neutron number N=34, was measured using the ^{53}K(p,2p) one-proton removal reaction at ∼210 MeV/u at the RIBF facility. The 2_{1}^{+} excitation energy is found at 1656(18) keV, the highest among the Ar isotopes with N>20. This result is the first experimental signature of the persistence of the N=34 subshell closure beyond ^{54}Ca, i.e., below the magic proton number Z=20. Shell-model calculations with phenomenological and chiral-effective-field-theory interactions both reproduce the measured 2_{1}^{+} systematics of neutron-rich Ar isotopes, and support a N=34 subshell closure in ^{52}Ar.

19.
Phys Rev Lett ; 120(17): 172501, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756826

RESUMEN

The (^{12}N, ^{12}C) charge-exchange reaction at 175 MeV/u was developed as a novel probe for studying the isovector spin giant monopole resonance (IVSMR), whose properties are important for better understanding the bulk properties of nuclei and asymmetric nuclear matter. This probe, now available through the production of ^{12}N as a secondary rare-isotope beam, is exothermic, is strongly absorbed at the surface of the target nucleus, and provides selectivity for spin-transfer excitations. All three properties enhance the excitation of the IVSMR compared to other, primarily light-ion, probes, which have been used to study the IVSMR thus far. The ^{90}Zr(^{12}N,^{12}C) reaction was measured and the excitation energy spectra up to about 70 MeV for both the spin-transfer and non-spin-transfer channels were deduced separately by tagging the decay by γ emission from the ^{12}C ejectile. Besides the well-known Gamow-Teller and isobaric analog transitions, a clear signature of the IVSMR was identified. By comparing with the results from light-ion reactions on the same target nucleus and theoretical predictions, the suitability of this new probe for studying the IVSMR was confirmed.

20.
Phys Rev Lett ; 121(26): 262502, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636115

RESUMEN

The most neutron-rich boron isotopes ^{20}B and ^{21}B have been observed for the first time following proton removal from ^{22}N and ^{22}C at energies around 230 MeV/nucleon. Both nuclei were found to exist as resonances which were detected through their decay into ^{19}B and one or two neutrons. Two-proton removal from ^{22}N populated a prominent resonancelike structure in ^{20}B at around 2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely spaced 1^{-},2^{-} ground-state doublet predicted by the shell model. In the case of proton removal from ^{22}C, the ^{19}B plus one- and two-neutron channels were consistent with the population of a resonance in ^{21}B 2.47±0.19 MeV above the two-neutron decay threshold, which is found to exhibit direct two-neutron decay. The ground-state mass excesses determined for ^{20,21}B are found to be in agreement with mass surface extrapolations derived within the latest atomic-mass evaluations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...