Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295913

RESUMEN

Histone deacetylase inhibitors (HDACi) are the most widely studied HIV latency-reversing agents (LRAs). The HDACi suberoylanilide hydroxamic acid (vorinostat [VOR]) has been employed in several clinical HIV latency reversal studies, as well as in vitro models of HIV latency, and has been shown to effectively induce HIV RNA and protein expression. Despite these findings, response to HDACi can vary, particularly with intermittent dosing, and information is lacking on the relationship between the host transcriptional response and HIV latency reversal. Here, we report on global gene expression responses to VOR and examine the longevity of the transcriptional response in various cellular models. We found that many genes are modulated at 6 h post-VOR treatment in HCT116, Jurkat, and primary resting CD4 T cells, yet return to baseline levels after an 18-h VOR-free period. With repeat exposure to VOR in resting CD4 T cells, we found similar and consistent transcriptional changes at 6 h following each serial treatment. In addition, serial exposure in HIV-infected suppressed donor CD4 T cells showed consistent transcriptional changes after each exposure to VOR. We identified five host genes that were strongly and consistently modulated following histone deacetylase (HDAC) inhibition; three (H1F0, IRGM, and WIPI49) were upregulated, and two (PHF15 and PRDM10) were downregulated. These genes demonstrated consistent modulation in peripheral blood mononuclear cell (PBMC) samples from HIV-positive (HIV+) participants who received either single or multiple doses of 400 mg of VOR. Interestingly, the host transcriptional response did not predict induction of cell-associated HIV RNA, suggesting that other cellular factors play key roles in HIV latency reversal in vivo despite robust HDACi pharmacological activity.IMPORTANCE Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Vorinostat/farmacología , Acetilación , Linfocitos T CD4-Positivos/efectos de los fármacos , VIH-1/metabolismo , VIH-1/patogenicidad , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Jurkat , Leucocitos Mononucleares/efectos de los fármacos , Cultivo Primario de Células , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Vorinostat/metabolismo
3.
Nat Med ; 24(5): 563-571, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29713085

RESUMEN

Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.


Asunto(s)
Antígenos CD19/metabolismo , Inmunoterapia Adoptiva , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Receptores Quiméricos de Antígenos/metabolismo , Animales , Femenino , Interleucina-6/metabolismo , Masculino , Ratones , Factor de Transcripción STAT3/metabolismo , Transcripción Genética , Resultado del Tratamiento
4.
PLoS One ; 9(1): e87098, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489846

RESUMEN

We have previously shown that live-attenuated rabies virus (RABV)-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1) to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1), on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1). We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV), rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 10(3) focus forming units (ffu)/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a single-dose RABV vaccine that requires only a minimum of virus.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Genoma Viral , Molécula 1 de Adhesión Intercelular/inmunología , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Rabia/prevención & control , Proteínas Virales/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Línea Celular , Cricetinae , Femenino , Expresión Génica , Humanos , Inmunidad Humoral/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/genética , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Ratones Endogámicos C57BL , Rabia/inmunología , Rabia/virología , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/genética , Virus de la Rabia/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Atenuadas , Vacunas Sintéticas , Proteínas Virales/genética , Virión/genética , Virión/inmunología
5.
J Virol ; 87(16): 9097-110, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760241

RESUMEN

Replication-deficient rabies viruses (RABV) are promising rabies postexposure vaccines due to their prompt and potent stimulation of protective virus neutralizing antibody titers, which are produced in mice by both T-dependent and T-independent mechanisms. To promote such early and robust B cell stimulation, we hypothesized that live RABV-based vaccines directly infect B cells, thereby activating a large pool of antigen-presenting cells (APCs) capable of providing early priming and costimulation to CD4(+) T cells. In this report, we show that live RABV-based vaccine vectors efficiently infect naive primary murine and human B cells ex vivo. Infection of B cells resulted in the significant upregulation of early markers of B cell activation and antigen presentation, including CD69, major histocompatibility complex class II (MHC-II), and CD40 in murine B cells or HLA-DR and CD40 in human B cells compared to mock-infected cells or cells treated with an inactivated RABV-based vaccine. Furthermore, primary B cells infected with a live RABV expressing ovalbumin were able to prime and stimulate naive CD4(+) OT-II T cells to proliferate and to secrete interleukin-2 (IL-2), demonstrating a functional consequence of B cell infection and activation by live RABV-based vaccine vectors. We propose that this direct B cell stimulation by live RABV-based vaccines is a potential mechanism underlying their induction of early protective T cell-dependent B cell responses, and that designing live RABV-based vaccines to infect and activate B cells represents a promising strategy to develop a single-dose postexposure rabies vaccine where the generation of early protective antibody titers is critical.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/virología , Activación de Linfocitos , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Adulto , Animales , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Interleucina-2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vacunas Atenuadas/inmunología
6.
J Virol ; 87(16): 9217-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760250

RESUMEN

B cells secreting IgG antibodies, but not IgM, are thought to be solely responsible for vaccine-induced protection against rabies virus (RABV) infections in postexposure settings. In this report, we reinvestigated the potential for IgM to mediate protection in a mouse model of RABV vaccination. Immunocompetent mice immunized with an experimental live replication-deficient RABV-based vaccine produced virus neutralizing antibodies (VNAs) within 3 days of vaccination. However, mice unable to produce soluble IgM (sIgM(-/-)) did not produce VNAs until 7 days postimmunization. Furthermore, sIgM(-/-) mice were not protected against RABV infection when challenged 3 days postimmunization, while all wild-type mice survived challenge. Consistent with the lack of protection against pathogenic RABV challenge, approximately 50- to 100-fold higher viral loads of challenge virus were detected in the muscle, spinal cord, and brain of immunized sIgM(-/-) mice compared to control mice. In addition, IgG antibody titers in vaccinated wild-type and sIgM(-/-) mice were similar at all time points postimmunization, suggesting that protection against RABV challenge is due to the direct effects of IgM and not the influence of IgM on the development of effective IgG antibody titers. In all, early vaccine-induced IgM can limit dissemination of pathogenic RABV to the central nervous system and mediate protection against pathogenic RABV challenge. Considering the importance for the rapid induction of VNAs to protect against RABV infections in postexposure prophylaxis settings, these findings may help guide the development of a single-dose human rabies vaccine.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunoglobulina M/inmunología , Profilaxis Posexposición/métodos , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Rabia/prevención & control , Vacunación/métodos , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina M/deficiencia , Ratones , Rabia/inmunología , Vacunas Antirrábicas/administración & dosificación , Análisis de Supervivencia , Carga Viral
7.
PLoS Negl Trop Dis ; 7(3): e2129, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516660

RESUMEN

Over two-thirds of the world's population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R-/-) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R-/- mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R-/- mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R-/- mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of optimal vaccine-induced primary but not secondary antibody responses against RABV infections.


Asunto(s)
Interleucinas/inmunología , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Rabia/inmunología , Rabia/prevención & control , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-21/deficiencia
8.
J Virol ; 86(21): 11533-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22896601

RESUMEN

A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220(+)GL7(hi)CD95(hi)) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4(+) T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrß(tm1Mom) Tcrδ(tm1Mom)/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical.


Asunto(s)
Linfocitos B/inmunología , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Vacunas Antirrábicas/administración & dosificación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...