Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 287(Pt 2): 132169, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34500334

RESUMEN

Due to the shortage of freshwater around the world, seawater is becoming an important water source. However, seawater contains a high concentration of bromide that can form harmful disinfection by-products during water disinfection. Therefore, the current seawater reverse osmosis (SWRO) has to adopt two-pass reverse osmosis (RO) configuration for effective bromide removal, increasing the overall desalination cost. In this study, a bromide selective composite electrode was developed for membrane capacitive deionisation (MCDI). The composite electrode was developed by coating a mixture of bromide selective resin and anion exchange polymer on the surface of the commercial activated carbon electrode, and its performance was compared to that of conventional carbon electrode. The results demonstrated that the composite electrode has ten times better bromide selectivity than the conventional carbon electrode. The study shows the potential application of MCDI for the selective removal of target ions from water sources and the potential for resource recovery through basic modification of commercial electrode.


Asunto(s)
Bromuros , Purificación del Agua , Carbón Orgánico , Electrodos , Membranas Artificiales , Agua de Mar , Aguas Residuales
2.
Chemosphere ; 286(Pt 2): 131729, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34388871

RESUMEN

In this study, a 1000 L/d capacity one-off on-site wastewater treatment system was operated for over a year as a pilot alternative to the conventional on-site treatment as currently used in urban Bhutan. An up-flow anaerobic sludge blanket (UASB) was used for blackwater treatment (to replace "septic tank followed by an anaerobic biofilter (ABF) (to replace soak pits) for the treatment of a mixture of greywater and UASB effluent. Shredded waste plastic bottles were used as the novel biofilter media in the ABF. During a yearlong operation, the pilot system produced a final treated effluent from ABF with average BOD5 28 mg/L, COD 38 mg/L, TSS 85 mg/L and 5 log units of Escherichia coli. These effluents met three out of four of the national effluent discharge limits of Bhutan, but unsuccessful to meet the Escherichia coli standard over a yearlong operation. Further, process optimisation may enable more significant Escherichia coli removal. An economic analysis indicates that the total unit cost (capital and operating expenditures) of this alternative wastewater treatment system for more than 50 users range between USD 0.27-0.37/person/month comparable to USD 0.29-0.42/person/month for the current predominant on-site system, i.e., "septic tanks". This pilot study, therefore, indicates that this wastewater treatment system using shredded waste plastic biofilter media has high potential to replace the current conventional treatment, i.e., "septic tanks", which are often overloaded with greywater and discharging effluents which does not meet the national standards.


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Bután , Reactores Biológicos , Humanos , Proyectos Piloto , Plásticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
3.
Chemosphere ; 234: 536-544, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31229715

RESUMEN

The formation of toxic disinfection by-products during water disinfection due to the presence of bromide and iodide is a major concern. Current treatment technologies such as membrane, adsorption and electrochemical processes have been known to have limitations such as high energy demand and excessive chemical use. In this study, the selectivity between bromide and iodide, and their removal in membrane capacitive deionisation (MCDI) was evaluated. The results showed that iodide was more selectively removed over bromide from several binary feed waters containing bromide and iodide under various initial concentrations and applied voltages. Even in the presence of significant background concentration of sodium chloride, definite selectivity of iodide over bromide was observed. The high partial-charge transfer coefficient of iodide compared to bromide could be a feasible explanation for high iodide selectivity since both bromide and iodide have similar ionic charge and hydrated radius. The result also shows that MCDI can be a potential alternative for the removal of bromide and iodide during water treatment.


Asunto(s)
Bromuros/aislamiento & purificación , Desinfección/métodos , Yoduros/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...