Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 16669, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028901

RESUMEN

Alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) are key to the establishment of the fermentative metabolism in plants during oxygen shortage. Most of the evidence that both ADH and PDC are required for plant tolerance to hypoxia comes from experiments performed by limiting oxygen in the environment, such as by exposing plants to gaseous hypoxia or to waterlogging or submergence. However, recent experiments have shown that hypoxic niches might exist in plants grown in aerobic conditions. Here, we investigated the importance of ADH and PDC for plant growth and development under aerobic conditions, long-term waterlogging and short-term submergence. Data were collected after optimizing the software associated with a commercially-available phenotyping instrument, to circumvent problems in separation of plants and background pixels based on colour features, which is not applicable for low-oxygen stressed plants due to the low colour contrast of leaves with the brownish soil. The results showed that the growth penalty associated with the lack of functional ADH1 or both PDC1 and PDC2 is greater under aerobic conditions than in hypoxia, highlighting the importance of fermentative metabolism in plants grown under normal, aerobic conditions.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Fenotipo , Piruvato Descarboxilasa/metabolismo , Alcohol Deshidrogenasa/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipoxia/genética , Hipoxia/metabolismo , Desarrollo de la Planta/fisiología , Piruvato Descarboxilasa/genética
2.
Plant Cell ; 26(10): 3911-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25281688

RESUMEN

In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Hojas de la Planta/fisiología , Algoritmos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Luz , Modelos Biológicos , Mutación , Fitocromo B/genética , Fitocromo B/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Grabación de Cinta de Video
3.
Funct Plant Biol ; 39(11): 860-869, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32480836

RESUMEN

Plants forming a rosette during their juvenile growth phase, such as Arabidopsis thaliana (L.) Heynh., are able to adjust the size, position and orientation of their leaves. These growth responses are under the control of the plants circadian clock and follow a characteristic diurnal rhythm. For instance, increased leaf elongation and hyponasty - defined here as the increase in leaf elevation angle - can be observed when plants are shaded. Shading can either be caused by a decrease in the fluence rate of photosynthetically active radiation (direct shade) or a decrease in the fluence rate of red compared with far-red radiation (neighbour detection). In this paper we report on a phenotyping approach based on laser scanning to measure the diurnal pattern of leaf hyponasty and increase in rosette size. In short days, leaves showed constitutively increased leaf elevation angles compared with long days, but the overall diurnal pattern and the magnitude of up and downward leaf movement was independent of daylength. Shade treatment led to elevated leaf angles during the first day of application, but did not affect the magnitude of up and downward leaf movement in the following day. Using our phenotyping device, individual plants can be non-invasively monitored during several days under different light conditions. Hence, it represents a proper tool to phenotype light- and circadian clock-mediated growth responses in order to better understand the underlying regulatory genetic network.

4.
Ann Bot ; 108(6): 1179-94, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21724656

RESUMEN

BACKGROUND AND AIMS: The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat-Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments. METHODS: A field experiment was performed with winter wheat 'Soissons' grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined. KEY RESULTS: Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations. CONCLUSIONS: It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi-isogenic lines differing by single architectural traits.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Ascomicetos/patogenicidad , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Suelo/química , Esporas Fúngicas/fisiología , Temperatura , Factores de Tiempo , Triticum/crecimiento & desarrollo
5.
Ann Bot ; 107(5): 865-73, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20929895

RESUMEN

BACKGROUND AND AIMS: The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny. METHODS: Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape. KEY RESULTS: The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species. CONCLUSIONS: Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.


Asunto(s)
Hordeum/anatomía & histología , Modelos Biológicos , Hojas de la Planta/anatomía & histología , Triticum/anatomía & histología , Zea mays/anatomía & histología , Algoritmos , Francia , Hordeum/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Morfogénesis , Hojas de la Planta/crecimiento & desarrollo , Especificidad de la Especie , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA