Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Biol ; 83: e268015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283372

RESUMEN

Pantoea ananatis is the causal agent of maize white spot, a foliar disease responsible for significant maize yield reduction worldwide, especially in Brazil. In general, the maize foliar diseases control involves the adoption of resistant genotypes and pesticides application. However, the use of agrochemicals can significantly cause increase production costs, damage to human health and negative environmental impacts. In this sense, the use of biological control agents has been considered among the most promising eco-friendly technologies for sustainable agriculture. Actinobacteria, particularly of Streptomyces genus, has been widely recognized as agroindustrially important microorganism due to its potential in producing diverse range of secondary metabolites, including antibiotics and enzymes. Thus, the aim of this work is to characterize and to evaluate the potential of soil actinobacteria for P. ananatis control. We observed that 59 actinobacteria strains (85%) exhibited proteolytic or chitinolytic activity. Only the strains Streptomyces pseudovenezuelae ACSL 470, that also exhibited high proteolytic activity, S. novaecaesareae ACSL 432 and S. laculatispora ACP 35 demonstrated high or moderate antagonist activity in vitro against P. ananatis. Temporal analysis of metabolites produced by these strains growth in different liquid media indicated greater antibacterial activity at 72 h. In this condition, chromatographic and mass spectrometry analysis revealed that S. pseudovenezuelae ACSL 470 strain produced neomycin, an aminoglycoside antibiotic that displayed high bactericidal activity in vitro against P. ananatis. This is the first report of actinobacteria acting as potential microbial antagonists for P. ananatis control. Further studies are needed to determine the control efficacy of maize white spot disease by Streptomyces strains or their metabolites in greenhouse and field conditions.


Asunto(s)
Actinobacteria , Pantoea , Humanos , Zea mays , Ambiente , Pantoea/genética , Pantoea/metabolismo
2.
Genet Mol Res ; 16(3)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28873206

RESUMEN

Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.


Asunto(s)
Actinobacteria/genética , Filogenia , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/citología , Actinobacteria/enzimología , Amilasas/metabolismo , Proteínas Bacterianas/metabolismo , Celulasas/metabolismo , Microbiología Industrial/métodos , Lipasa/metabolismo , ARN Ribosómico 16S/genética , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...