Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(3): 421-440.e7, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979584

RESUMEN

Most cognitive functions involving the prefrontal cortex emerge during late development. Increasing evidence links this delayed maturation to the protracted timeline of prefrontal development, which likely does not reach full maturity before the end of adolescence. However, the underlying mechanisms that drive the emergence and fine-tuning of cognitive abilities during adolescence, caused by circuit wiring, are still unknown. Here, we continuously monitored prefrontal activity throughout the postnatal development of mice and showed that an initial activity increase was interrupted by an extensive microglia-mediated breakdown of activity, followed by the rewiring of circuit elements to achieve adult-like patterns and synchrony. Interfering with these processes during adolescence, but not adulthood, led to a long-lasting microglia-induced disruption of prefrontal activity and neuronal morphology and decreased cognitive abilities. These results identified a nonlinear reorganization of prefrontal circuits during adolescence and revealed its importance for adult network function and cognitive processing.


Asunto(s)
Cognición , Corteza Prefrontal , Adolescente , Humanos , Cognición/fisiología , Corteza Prefrontal/fisiología , Neuronas/fisiología
2.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640541

RESUMEN

To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Jikomes et al., 2016; Heinz et al., 2017), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nose poke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within-subject and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Wilensky et al., 2006; Haubensak et al., 2010) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Sinha, 2008; Bolton et al., 2009). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences.


Asunto(s)
Núcleo Amigdalino Central , Animales , Ratones , Condicionamiento Operante , Motivación , Afecto , Neuronas
3.
bioRxiv ; 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37461627

RESUMEN

To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Heinz et al., 2017; Jikomes et al., 2016), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nosepoke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within- and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Haubensak et al., 2010; Wilensky et al., 2006) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Bolton et al., 2009; Sinha, 2008). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences. Significance Statement: It is unclear how different neuronal populations contribute to reward- and aversion-driven behaviors within a subject. To address this question, we developed a novel behavioral paradigm in which mice obtain food and avoid footshocks via the same operant response. We then use this paradigm to test how the central amygdala coordinates appetitive and aversive behavioral responses. By testing somatostatin-IRES-Cre and CRF-IRES-Cre transgenic lines, we found significant differences between strains on task acquisition and performance. Using chemogenetics, we demonstrate that CeA SOM+ neurons regulate motivation for reward, while manipulation of CeA CRF+ neurons had no effect on task performance. Future studies investigating the interaction between positive and negative motivation circuits should benefit from the use of this dual valence paradigm.

4.
PLoS One ; 18(2): e0281388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36757923

RESUMEN

Social behavior is complex and fundamental, and its deficits are common pathological features for several psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Acute stress may have a negative impact on social behavior, and these effects can vary based on sex. The aim of this study was to explore the effect of acute footshock stress, using analogous parameters to those commonly used in fear conditioning assays, on the sociability of male and female C57BL/6J mice in a standard social approach test. Animals were divided into two main groups of footshock stress (22 male, 24 female) and context exposed control (23 male and 22 female). Each group had mice that were treated intraperitoneally with either the benzodiazepine-alprazolam (control: 10 male, 10 female; stress: 11 male, 11 female), or vehicle (control: 13 male, 12 female; stress: 11 male, 13 female). In all groups, neuronal activation during social approach was assessed using immunohistochemistry against the immediate early gene product cFos. Although footshock stress did not significantly alter sociability or latency to approach a social stimulus, it did increase defensive tail-rattling behavior specifically in males (p = 0.0022). This stress-induced increase in tail-rattling was alleviated by alprazolam (p = 0.03), yet alprazolam had no effect on female tail-rattling behavior in the stress group. Alprazolam lowered cFos expression in the medial prefrontal cortex (p = 0.001 infralimbic area, p = 0.02 prelimbic area), and social approach induced sex-dependent differences in cFos activation in the ventromedial intercalated cell clusters (p = 0.04). Social approach following stress-induced cFos expression was positively correlated with latency to approach and negatively correlated with sociability in the prelimbic area and multiple amygdala subregions (all p < 0.05). Collectively, our results suggest that acute footshock stress induces sex-dependent alterations in defensiveness and differential patterns of cFos activation during social approach.


Asunto(s)
Alprazolam , Corteza Prefrontal , Masculino , Femenino , Ratones , Animales , Corteza Prefrontal/fisiología , Alprazolam/farmacología , Ratones Endogámicos C57BL , Amígdala del Cerebelo/fisiología , Conducta Social
5.
Biomolecules ; 12(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36359001

RESUMEN

A focused in-house library of about 1000 compounds comprising various heterocyclic motifs in combination with structural fragments similar to ß-phenethylamine (PEA) or tyramine was screened for the agonistic activity towards trace amine-associated receptor 1 (TAAR1). The screening yielded two closely related hits displaying EC50 values in the upper submicromolar range. Extensive analog synthesis and testing for TAAR1 agonism in a BRET-based cellular assay identified compound 62 (LK00764) with EC50 = 4.0 nM. The compound demonstrated notable efficacy in such schizophrenia-related in vivo tests as MK-801-induced hyperactivity and spontaneous activity in rats, locomotor hyperactivity of dopamine transporter knockout (DAT-KO) rats, and stress-induced hyperthermia (i.p. administration). Further preclinical studies are necessary to evaluate efficacy, safety and tolerability of this potent TAAR1 agonist for the potential development of this compound as a new pharmacotherapy option for schizophrenia and other psychiatric disorders.


Asunto(s)
Trastornos Psicóticos , Receptores Acoplados a Proteínas G , Animales , Ratas , Receptores Acoplados a Proteínas G/agonistas , Compuestos de Bifenilo
6.
Front Psychiatry ; 13: 943869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873262

RESUMEN

Background: Cognitive impairment is among the core dimensions in schizophrenia and is a significant predictor of everyday functioning in people with schizophrenia. Given the enormous burden of schizophrenia, the search for its clinically relevant biomarkers is essential. Researchers have been trying to elucidate factors of cognitive impairment as well as personal performance, but the search is still ongoing. The aim of the study was to search for associations between BDNF, CRP, IL-6 and clinical symptoms, cognitive and personal performance in patients with paranoid schizophrenia. Methods: A total of 86 patients (53.5% women, mean age 31.1 ± 6.5) with paranoid schizophrenia (F20.0; ICD-10) in remission were examined. Clinical and neuropsychological examination included the Positive and Negative Syndrome Scale, Personal and Social Performance Scale, Calgary Depression Scale for Schizophrenia and the Brief Assessment of Cognitive Function in Schizophrenia. IL-6, BDNF, CRP levels were determined in the patients' blood serum. Results: Cognitive impairment was revealed in 79.1% of patients and was more profound in patients with higher number of hospitalizations (p = 0.006). The average BDNF levels were 13.38 ± 15.84 ng/ml, CRP concentration was 2.09 ± 2.54 mg/l, and IL-6 levels were 12.14 ± 5.88 pg/ml. There were no differences in biomarker levels or BACS results in patients that had different antipsychotic therapy or differed in the presence of anticholinergic therapy. CRP levels were higher in patients with longer disease duration, lower age of onset, more impaired personal social performance and processing speed. IL-6 was higher in individuals with lower working memory scores. PANSS negative subscale score negatively correlated and PSP score positively correlated with most cognitive domains. A linear regression established that the first episode vs. multiple episodes of schizophrenia could statistically significantly predict personal and social performance and cognition, including speech fluency and planning, as well as CRP levels. Conclusions: This study continues the search for biomarkers of schizophrenia and cognitive impairment in schizophrenia to improve the reliability of diagnosing the disorder and find new treatment approaches. The role of the number of psychoses experienced (first episode vs. multiple episodes of schizophrenia) in cognition, personal and social performance and inflammation is shown.

7.
Behav Brain Res ; 389: 112623, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348872

RESUMEN

Females exhibit greater susceptibility to trauma- and stress-related disorders compared to males; therefore, it is imperative to study sex differences in the mode and magnitude of defensive responses in the face of threat. To test for sex differences in defensive behavior, we used a modified Pavlovian fear conditioning paradigm that elicits clear transitions between freezing and flight behaviors within individual subjects. Female mice subjected to this paradigm exhibited more freezing behavior compared to males, especially during the intertrial interval period. Female mice also exhibited more freezing in response to conditioned auditory stimuli in the last block of extinction training. Furthermore, there were sex differences in the expression of other adaptive behaviors during fear conditioning. Assaying rearing, grooming, and tail rattling behaviors during the conditioned flight paradigm yielded measurable differences across sessions and between males and females. Overall, these results provide insight into sex-dependent alterations in mouse behavior induced by fear conditioning.


Asunto(s)
Reacción de Prevención , Condicionamiento Clásico , Miedo , Caracteres Sexuales , Animales , Conducta Animal , Extinción Psicológica , Femenino , Aseo Animal , Masculino , Ratones Endogámicos C57BL
8.
Eur Addict Res ; 26(2): 96-102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32045915

RESUMEN

INTRODUCTION: Social conformity is considered a possible promoter of alcohol use disorder in humans. The goal of this study was to explore the impact of conformity as one of the social factors that might contribute to the alcohol preference in a rat model of ethanol intake. METHODS: To model social conformity, 105 Wistar rats were group housed (3 animals per cage) with a different number of rats drinking either 10% ethanol or water during daily drinking sessions. Ethanol preference tests were performed. RESULTS: Ethanol preference significantly increased if the majority of cage mates received ethanol during drinking sessions. The analysis also showed an increase in the number of approaches to the ethanol bottle versus the water bottle and an increased duration of a single ethanol approach during the 2 bottle preference test in such groups. CONCLUSION: These results demonstrate that social conditions promote the ethanol consumption in the novel conformity model used in this study.


Asunto(s)
Consumo de Bebidas Alcohólicas/tendencias , Ratas Wistar , Conformidad Social , Animales , Conducta Animal , Masculino , Ratas
9.
Front Pharmacol ; 9: 329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29681856

RESUMEN

Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.

10.
J Neurosci ; 38(8): 1959-1972, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29348190

RESUMEN

Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Hipercinesia/etiología , Animales , Disfunción Cognitiva/metabolismo , Femenino , Técnicas de Inactivación de Genes , Hipercinesia/metabolismo , Masculino , Ratas , Ratas Wistar
11.
Psychiatry Res ; 262: 542-548, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28951142

RESUMEN

The aim of this study was to search for correlates of cognitive impairment in patients with paranoid schizophrenia among clinical, demographic, anamnestic and biochemical markers (NSE, S100B protein, BDNF, hs-CRP). Patients with paranoid schizophrenia (n=125) were examined using the Brief Assessment of Cognitive Function in Schizophrenia, the Rey-Osterrieth Complex Figure task, and a number of clinical scales including the Positive and Negative Syndrome Scale. The majority of patients demonstrated cognitive impairment. The type of impairment was highly heterogeneous and individual. Relationships were found between the degree of executive functioning and family history of mental illness; working memory and age of onset of schizophrenia; and visual memory and psychopathological symptomatology. Negative and affective symptoms were not significantly associated with cognitive functioning. Treatment with first generation antipsychotics was associated with a more frequent impairment of motor skills, and concomitant anticholinergic drugs, with reduced accuracy. Use of second-generation antipsychotics only was associated with better accuracy, working memory and speech fluency. Among the patients, 21.4% had signs of a systemic inflammatory response, indicating a possible role of inflammatory response in the development of schizophrenia. CRP, S100B and NSE levels reflected features of the course of illness and therapeutic response. Patients with lower concentrations of BDNF were characterized by lower processing speeds.


Asunto(s)
Antipsicóticos/farmacología , Disfunción Cognitiva/fisiopatología , Función Ejecutiva/fisiología , Inflamación/sangre , Memoria a Corto Plazo/fisiología , Esquizofrenia Paranoide/sangre , Esquizofrenia Paranoide/fisiopatología , Adulto , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Función Ejecutiva/efectos de los fármacos , Femenino , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Persona de Mediana Edad , Esquizofrenia Paranoide/complicaciones , Esquizofrenia Paranoide/tratamiento farmacológico
12.
Behav Brain Res ; 331: 276-281, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28457882

RESUMEN

There is a need to develop cognitive tasks that address valid neuropsychological constructs implicated in disease mechanisms and can be used in animals and humans to guide novel drug discovery. Present experiments aimed to characterize a novel reinforcement learning task based on a classical operant behavioral phenomenon observed in multiple species - differences in response patterning under variable (VI) vs fixed interval (FI) schedules of reinforcement. Wistar rats were trained to press a lever for food under VI30s and later weekly test sessions were introduced with reinforcement schedule switched to FI30s. During the FI30s test session, post-reinforcement pauses (PRPs) gradually grew towards the end of the session reaching 22-43% of the initial values. Animals could be retrained under VI30s conditions, and FI30s test sessions were repeated over a period of several months without appreciable signs of a practice effect. Administration of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 ((5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) prior to FI30s sessions prevented adjustment of PRPs associated with the change from VI to FI schedule. This effect was most pronounced at the highest tested dose of MK-801 and appeared to be independent of the effects of this dose on response rates. These results provide initial evidence for the possibility to use different response patterning under VI and FI schedules with equivalent reinforcement density for studying effects of drug treatment on reinforcement learning.


Asunto(s)
Refuerzo en Psicología , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Aprendizaje Discriminativo/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Masculino , N-Metilaspartato/farmacología , Ratas Wistar , Esquema de Refuerzo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...